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L a r g e - S c a l e  O p p o r t u n i s t i c  S e n s i n g

Exploiting Social 
Networks for  
Large-Scale Human 
Behavior Modeling

T he mobile-sensing revolution is 
coming of age, and we will soon 
see these systems in everyday use. 
This progress is accelerated by 
the development of smartphones 

as a viable sensing platform. Today, most mobile 
phones include various sensors, such as GPS, 

accelerometers, microphones, 
and cameras.1 Classification 
models can exploit such data 
to allow, for instance, a mobile 
phone to understand our 
actions and environment.2–4 
Research into building these 
models is driving key mobile 
application domains includ-
ing mobile heath2 and green 
energy awareness.5 How-
ever, significant challenges 
exist in the real-world use of 
human activity modeling. For 

example, a key obstacle is the differences in 
contextual conditions and user characteristics 
(for example, age, gender, and lifestyle) encoun-
tered in large-scale mobile sensing systems. This 
leads to the discriminative features in sensor 
data, used by classifiers to recognize different 
human activities, varying from user to user.  

The problem only worsens as the scale of these 
systems increases, further widening the diver-
sity of contexts and users to which classifiers 
are exposed.

Training personalized classification models, 
which continues to attract attention from mobile- 
sensing researchers,6–8 can counter such prob-
lems. These models are tuned to the particular 
sensor data encountered by each user. However, 
training a personalized model for each user re-
quires a large amount of labeled data from each 
person. The burden of manually collecting and 
annotating sensor data falls upon the user, mak-
ing personalization ill-suited for general use in 
large-scale mobile sensing systems.

The Cooperative Communities (CoCo) 
framework is a new approach to personalizing 
classification models by leveraging social net-
works. The CoCo framework significantly low-
ers the amount of training data required from 
each user by sharing training data and classi-
fication models within social networks. Unless 
this is done carefully, however, the resultant 
classification model will not be personalized to 
a specific user. In the CoCo framework, only 
people with strong similarities share training 
data. The wide range of social networks (for 
example, collocation, temporal co-occurrence, 

The Cooperative Communities (CoCo) learning framework leverages 
everyday social connections between people to personalize classification 
models. By exploiting social networks, CoCo spreads the burden of 
providing training data over an entire community.
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and friendship) indicates different types 
of interpersonal similarities. The CoCo 
framework uses these different net-
works to determine a social network 
graph that quantifies the similarity be-
tween users, identifying opportunities 
for effective sharing. We use this social 
network graph as an overlay network 
to perform an efficient search of the en-
tire user population without having to 
resort to a brute force search of all users 
and their data, which would not scale. 
We have evaluated CoCo under three 
common application scenarios and 
found that by leveraging communities it 
outperforms conventional approaches 
to modeling behavior and diminishes 
the manual effort required by users.

Challenges to Mobile 
Classification
Mobile sensors, such as smartphones, 
are exposed to varying environmental 
conditions (for example, loud outdoor 
streets and quiet indoor offices), and 
users carry them differently (stored in 
bags and briefcases, placed in pockets 
and on belts, and so on). Accompa-
nying the diverse range of contexts to 
which a phone is exposed is an equally 
diverse assortment of users. Users can 
vary for many reasons, a clear exam-
ple being physical differences, such as 
height, weight, or gender. Other cate-
gories of dissimilarity include lifestyle 
and background. People might live and 
work in different places, and although 
they might even do the same set of  
basic activities (for example, work, so-
cialize, and exercise), they can perform 
these activities in distinctly different 
ways. The statistical models typically 
used for mobile sensing are supervised  
(example-based) and fail to generalize 
to the diversity common in real-world 
deployments. We refer to the conditions 
and problems in classifying human ac-
tivities and contexts, using mobile sen-
sors, as mobile classification. Although 
a wide variety of statistical models and 
application scenarios have been investi-
gated,1 the vast majority share a common 
approach and build a single supervised  

classifier that must generalize to all  
potential environments and users.

Increasing attention is being placed 
on alternative learning approaches that 
overcome these barriers to mobile clas-
sification. Community-guided learning 
(CGL)9 proposes new methods that let 
otherwise conventional classification 
models be trained on noisy error-prone  
labeled sensor data crowd-sourced 
from users. As we mentioned earlier, 
another promising direction being ac-
tively explored is personalized classifi-
cation models. The basic concept is to 
train multiple classification models, one 
for each user. Each model is tuned—
that is, specialized to the discrimina-
tive patterns observed in an individual 
user’s sensor data. Tuning typically re-
quires manual input from users, either 
by them correcting classification errors  
or providing training examples by  
labeling sensor data with the ground-
truth activity. Such user input lets the 
model be trained using data specific to 
a particular user. This approach’s ef-
fectiveness has been demonstrated in 
a number of classification domains, 
such as mobile health6 and everyday 
activities.7,8

However, these models’ success de-
pends heavily on the time and effort 
invested by all users. How broadly ap-
plicable this technique will become in 
its current form is questionable. The 
burden on users severely limits it from 
being used in mass-market consumer 
systems and application domains where 
users are not highly motivated to per-
form time-consuming classifier tuning. 
Existing approaches to the personaliza-
tion of classification models are ineffi-
cient and focus on an individual pro-
viding all the necessary training data. 
As a consequence, users are frequently 
forced to collect what is in retrospect 
redundant training data because a simi-
lar person in a similar context might 
have already collected nearly identical 
data. To address the problem of user la-
beling in personalization, CoCo shares 
training data and classification models 
within the social networks of users.

Coco’s primary objective is to train 
robust personalized models with a small 
amount of user time and effort by care-
fully sharing data between users with 
whom they share strong social ties. By 
using the training data of only highly 
similar users (that is, those who share 
characteristics and contexts), the per-
sonalized models produced by CoCo 
can closely approximate models person-
alized by individual users providing all 
the training data themselves.

Researchers have long recognized the 
tremendous power of social networks, 
and recent breakthroughs in mobile sens-
ing technology have made major advances 
in how these natural phenomena can be 
studied and leveraged. Social networks 
exist in many forms, such as those based 
on friendship, online interaction, proxim-
ity, and conversation patterns. Individu-
ally each network type indicates a certain 
type of connection or similarity between 
people. Collectively, these networks cap-
ture a large amount of information about 
users and their communities. Not only are 
researchers studying the social networks 
themselves, but much interest exists in 
learning how to exploit the information 
these networks contain for various ap-
plications. For example, one approach 
to routing in delay-tolerant networks is 
based on user social network centrality 
measures.10 However, to the best of our 
knowledge, applying social networks to 
boost human classification models re-
mains unstudied.

Model and Data Sharing with 
Cooperative Social Networks
To remove the need for users to label 
enough data to train their model en-
tirely by themselves, CoCo uses social 
connections to recognize opportunities 
to adopt training data already collected 
by other users or entire classification 
models that have already been person-
alized. As Figure 1 illustrates, CoCo 
consists of two key phases:

•	Constructing the social network sim-
ilarity graph. Different forms of so-
cial network information are distilled  
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into a weighted similarity graph be-
tween users. Edge weights indicate 
the suitability of either training data 
or a complete classification model to 
be shared between individuals.

•	 Searching for training data or clas-
sification models. For each user 
model, the entire user population is 
searched to identify suitable training 
data or whole classifiers. The similar-
ity graph defined by the social net-
work guides this process, not only 
identifying which data segments or 
classification models are suitable, but 
also determining the order in which 
individuals are searched.

We propose data and model sharing 
that uses social network information 

to identify similarities between users. 
Such similarities let us train models that 
are specialized to recognize classes of 
behaviors using the discriminative fea-
tures particular to the user’s charac-
teristics and environment. The use of 
social networks is critical not only in 
training personalized classifiers but 
also in making the proposed frame-
work efficient and practical. As the 
user population increases, there will be 
increasing opportunities to find users 
who share both contextual conditions 
and personal characteristics. At the 
same time, the computational cost of 
searching for pairwise opportunities to 
share data or models between users will 
increase exponentially. Rather than ex-
haustively search all users within the 

system, CoCo allows searching within 
groups of highly similar users, enabling 
the search process to shift quickly to the 
next most similar group once the search 
of the current group is complete.

Diverse Social  
Network Information
Over the past few years, researchers 
have studied many forms of social net-
works (conversation networks, proxim-
ity networks, co-occurrence networks, 
friendship networks, and so on). These 
social networks capture different in-
terpersonal similarities. CoCo uses 
strong social ties to determine if a user 
model will still be personalized to the 
user’s own sensor data after either shar-
ing training data with another user or 

Figure 1. The Cooperative Communities (CoCo) framework. A variety of available social network information is processed to 
form a weighted graph between users. This graph guides an efficient search, using either data or model sharing, to find a 
personalized classification model for each user.
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adopting that user’s model. One practi-
cal example of this is closely connected 
members of a conversation network, 
who often work or live in similar loca-
tions and so have overlapping contex-
tual conditions. Sensor data sampled by 
such individuals will be similarly influ-
enced by this shared context, increasing 
the suitability of their data or models to 
be shared. Another example is the pres-
ence of social relationships. People who 
regularly socialize or even groups of 
people who are densely interconnected 
within online social networks such as 
Facebook or Twitter likely share behav-
ioral patterns that can manifest in their 
sensor data. For example, these groups 
might participate in similar activities 
(such as hobbies or entertainment) or 
even have similar personal character-
istics (such as age, income level, and 
weight11). These types of user-centric 
similarities can influence the sensor 
data just as much as context (for exam-
ple, users’ age and weight can influence 
how they run or exercise).

We evaluated the CoCo framework 
using three types of readily observable 
social networks—real-world friend-
ship, temporal co-occurrence, and 
collocation—which we combined to 
measure the similarity among users. 
Friendship can be directly determined 
by self-report surveys completed by the 
user population, although methods to 
automatically determine these relations 
using sensors are maturing.12,13 Tem-
poral co-occurrence and collocation 
networks are easier to observe directly 
from sensor data (for example, GPS, 
Bluetooth, and device timestamps) 
than friendship connections. The ob-
servation of repeated collocation at 
certain times or days helps CoCo de-
termine various relationships and thus 
various types of similarity.12,13 For 
example, collocation on a Saturday 
might indicate a more personal con-
nection between people than colloca-
tion that occurs regularly during the 
week. Other factors, such as a specific 
location, are also helpful in detecting 
certain types of behavioral similarity.  

For instance, collocation at places such 
as a gym can indicate a shared prefer-
ence for exercise.

Constructing the Social  
Network Similarity Graph
To identify suitable candidates for shar-
ing either data or models, we construct 
a similarity graph based on social net-
work information. This process merges 
different forms of this information be-
fore arriving at a final graph. Although 
we discuss only three types of social 
networks here, CoCo can easily be gen-
eralized to others.

More formally, in this graph ev-
ery user is a node. The weight of the 
edge between two nodes i and j is the 
similarity score simuser(i, j). We com-
pute this value independently, once for 
each type of social network available, 
before applying a weighted average of 
these values to arrive at a final simi-
larity value. Depending on the types 
of activities being classified, we apply 
different weights to each variety of so-
cial network. For example, connections 
based on online social networks might 
indicate shared behavioral patterns but 
not necessarily shared contextual con-
ditions, as many virtual friends rarely 
meet and spend time together. Similarly 
when classifying types of activities that 
rely on a microphone, for which envi-
ronmental conditions (such as a quiet 
office or a noisy bar) can be critical, the 
weight of online social network infor-
mation should be reduced when com-
puting the final similarity score.

Precisely how we compute the simi-
larity for each variety of social network 
will vary based on information type. For 
friendship social networks, we adopt a 
simple binary score; if two users are 
friends, the score is 1, otherwise it is 0.  
For temporal co-occurrence and collo-
cation social networks, we first divide 
the range of location or time values into 
m intervals, where each interval is re-
garded as a bin. For each user, we then 
construct a histogram from these m 
bins, which reflects the distribution of 
the user’s location or temporal patterns.  

Using the histogram, we compute the 
temporal co-occurrence or colloca-
tion similarity score between two users  
i and j as follows:
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in which ei
(k)  is the frequency of user 

i’s location or time values that are as-
signed to histogram bin k.

Searching the Social  
Network Similarity Graph
CoCo’s search policy remains the same 
irrespective of the framework variant 
(that is, data or model sharing). This 
policy tries to find either specific data 
segments collected by another user 
or a complete model. Our similarity 
graph acts as an overlay network that 
sits above the entire user population. 
Instead of searching directly within 
this user population, the similarity 
graph guides the  process. By using the 
graph’s edge weights, the search process 
can safely ignore many potential candi-
dates, moving quickly by simply finding 
the next most similar user.

Before the search starts, users are 
clustered together into single logical 
search units called cliques. In large-
scale deployments, it is impractical 
and unnecessary to search and train 
models directly for individuals. Thus, 
CoCo trains personalized classifi-
ers for each clique. CoCo clusters the 
user population into cliques using the  
k-means clustering algorithm based on 
the social network similarity scores. 
However, the use of cliques is entirely 
optional, with the framework operat-
ing identically regardless of whether 
cliques are used. In what follows, the 
same description can apply without the 
use of cliques, if we assume a maximum 
clique size of one.

CoCo initially assumes that a classifi-
cation model is trained for every clique i 
using any training data the clique mem-
bers provide up to this point. Next, for 
each clique a search proceeds whereby 
users in any clique with high similarity 
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to clique i shares either data or models. 
We define the between-clique similarity 
score as follows:
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Therein, simuser(a, b) is the similarity 
score between two users a and b (com-
puted using all three social networks). 
The value of simclique(Ci, Cj) indicates 
the similarity score between two 
cliques Ci and Cj. This search proceeds 
until the stopping criterion is reached, 
specifically, if the number of searched 
cliques is larger than a threshold σ.

Different actions are taken after the 
search is complete, depending on which 
variant of the CoCo framework is used 
(that is, data or model sharing). If data 
sharing is employed, all the users in the 
cliques visited during the search prior 
to reaching the stopping criteria are 
exploited. Each of these users provides 
the entire training dataset they have 
collected. These data, along with the 
data collected by the users belonging to 
clique i, are used to train a classification 
model. All members of a clique share 
this same model.

Alternatively, if model sharing is 
used, all cliques visited during the 
search are evaluated one by one. If any 
of the clique classification models ex-
ceeds the performance of clique i’s cur-
rent model, we replace this model, and 
the procedure of sequentially testing 
clique models continues. We check all 
cliques in case a later clique provides a 
better model. We evaluate models rela-
tive to clique i’s current model based 
on their performance using any labeled 
data collected by clique i members. Any 
one of several existing approaches for 
judging classification model quality can 
be used within the CoCo framework.

Evaluation
We evaluate the CoCo framework us-
ing three datasets that represent com-
mon types of mobile classification. 
Each dataset not only offers different 

types of social network information, 
it also requires classifying different  
human activities. Using these datasets 
allow us to examine our technique’s  
effectiveness and versatility.

We benchmark our framework’s per-
formance against two baselines that 
are representative of conventional ap-
proaches to mobile classification in 
use today. The first baseline, single model, 
trains the same generic model for all us-
ers based on the available labeled data. 
Under the second baseline, the isolated 
model, we train a different classification 
model for each user, using the labeled 
training data collected by the users 
themselves. No cooperation or sharing 
of training data occurs among users dur-
ing any phase of these two benchmarks.

Datasets
The everyday activities dataset con-
tains both simple activities, {walk, run, 
stationary}, and high-level behaviors, 
{meeting, studying, exercising, social-
izing}. We perform an experiment over 
19 days with 20 people, each carrying 
a Nexus One smartphone sampling 
from the accelerometer, microphone, 
and GPS. We ask participants to label 
their own data on the phones directly 
or later during an offline Web-based 
data-collection phase, which we verify 
manually through random sampling. 
Two types of social ties between par-
ticipants are available: binary self- 
reported friendship associations from 
surveys completed by participants, 
and collocation and temporal co- 
occurrence information based on GPS 
location and time stamps.

Significant places is a commonly 
studied problem in pervasive comput-
ing.14 A temporal sequence of sensor 
data, often based on GPS location 
estimates, is used to compute loca-
tions that are personally significant 
to a user (for example, gym, home, 
and work). The significant places 
dataset includes data collected over a  
12-day period. We ask 13 participants 
to carry Nokia N80 or N95 mobile  
phones that capture data from the  

Wi-Fi, Bluetooth, and GPS sensors.  
We ask participants to label the times 
when they find themselves in locations 
they consider to be personally signifi-
cant, entering this information directly 
on the phones as the ground truth. Post-
collection validation via exit interviews 
occurs to clean data entry errors. For 
this dataset, we only collect participant 
social network ties based on the results 
of self-report surveys.

We externally source a dataset4 con-
taining transportation modes, specifi-
cally, {bike, bus, car, walk}. The trans-
portation dataset consists of 51 people, 
each carrying a personal GPS device 
for three months. Participants provide 
ground truth data of their transportation 
mode, which is independently verified 
while the dataset is collected. This data-
set only includes collocation and tempo-
ral co-occurrence network information.

Results
For each experiment, we train classi-
fication models using the model and 
data sharing variations of the CoCo 
framework, using the single model and  
isolated model benchmarks for compari-
son. We use a maximum clique size of 
one, searching and training on each in-
dividual. We repeat the training of each 
of these four models assuming different 
amounts of labeled data provided by us-
ers to show the sensitivity of the model 
accuracy to the availability of training 
data. During experiments we use a ran-
domly assigned 20 percent of labeled 
data as test data (used to evaluate ac-
curacy) and the remainder as a pool of 
training data. Although our results indi-
cate CoCo is effective across all datasets, 
each dataset is based on between 13 and 
51 people and lasts between 12 days and 
3 months. Given that CoCo is intended 
to overcome the challenges of long-term 
large-scale deployments, we intend to 
further evaluate the framework in future 
experiments with much larger numbers 
of participants over multiple months.

Comparing data and social network simi-
larity. We begin with a simple experiment  
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to test the intuition that underpins the 
CoCo framework. Our approach im-
plies that people connected by social 
ties have similarities in their sensor data 
because of shared behavioral patterns 
and environment. If this is true, when 
groups of people are tightly connected 
by close social ties, training data can be 
merged safely between them, and clas-
sification models trained by one person 
can be used by others. An alternative 
means to identify such similarities is 
to search the raw sensor data directly. 
We could compute pairwise similarity 
between the data contributed by users. 
Although such an approach would be 
effective, it would not scale to large-
scale mobile sensing systems with large 
volumes of data and people.

To evaluate our hypothesis, we use 
the everyday activities dataset. We 
compare how closely the edge weights 
of our social-network-based similar-
ity network correspond to a network 
based on pure raw sensor data similar-
ity. To compute the similarity based on 

raw data, we adopt a commonly used 
approach from computer vision.15 We 
compare the two similarity graphs by 
calculating the Frobenius norm of the 
difference of their respective matrix 
representations.

The result of this comparison re-
flects the average difference of each 
corresponding pair of similarity mea-
surements present in the two matrices. 
We find that the norm is small, 0.014, 
with the average difference in edges be-
ing only about 1.4 percent. Our results 
show that the similarity computed by 
leveraging social networks is closely 
aligned to the one we compute using a 
purely data-driven method, which has a 
far greater computational cost. 

We coarsely quantify this cost differ-
ence by comparing the computational 
time for both approaches.

Our everyday activities dataset con-
tains more than 400 Gbytes of raw sensor 
data. Computing the data-based similar-
ity requires around 20 hours using a sin-
gle desktop Linux machine. In contrast,  

on the same machine and dataset,  
social-network-based similarity can be 
obtained in under 10 seconds.

Everyday activities. Figure 2 presents the 
accuracy of model sharing, data shar-
ing, and the two baselines using the  
everyday activities dataset. This experi-
ment uses previously proposed features 
and classification models.3 It varies the 
quantity of training data between 250 
and 2,500 labeled feature vectors col-
lected per user. This quantity of training 
data corresponds to between 20 and 200 
minutes of human labeling time. The  
figure indicates that model and data 
sharing can achieve better performance 
than the single model and isolated model, re-
gardless of how much training data is 
available. Importantly, the CoCo frame-
work’s benefit relative to the closest base-
line is largest when users provide smaller 
quantities of training data. Figure 3a il-
lustrates the social network graph we 
use in this experiment, which is based 
on merging friendship, temporal co- 
occurrence, and collocation information.

Significant places. Our experiment 
uses features and a classification 
model validated in previous work as 
being appropriate for recognizing 
significant places.16 For this experi-
ment, the training set size ranges from  
100 to 1,500 feature vectors. These 
extremes correspond to approximately  
1 and 12 days of semiregular labeling 
by users. In this experiment, a primary 
difficulty in collecting labeled data is 
the slow rate at which people visit lo-
cations significant to them. As Figure 
4 shows, when the training dataset is 
small, both data sharing and model 
sharing versions of our framework 
outperform the single model and isolated 
model. As the training set grows, model 
sharing continues to outperform all 
other approaches, although eventually 
the isolated model achieves higher accu-
racy than data sharing. Furthermore, a 
counterintuitive result occurs in which 
classification model accuracy drops  
although training data increases.

Figure 2. Classification accuracy under different amounts of training data on the 
everyday activities dataset. For each dataset size tested, the CoCo framework 
techniques of model and data sharing outperform conventional approaches to 
classifier training.
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Upon carefully reviewing the data, 
we find this is due to disagreement 
among participants when labeling loca-
tions. Consequently, when certain users 
add labeled data, it actually weakens 
the existing models of other users due to 
inconsistencies in class labeling. We do 
not see this effect in the transportation  
or everyday activities datasets because 
their classes are more clearly defined 
and agreed upon between all users 
compared to the loose categories pres-
ent in significant places dataset.

Figure 4 suggests that model shar-
ing is also relatively unaffected by this 
complication due to label disagreement. 
We find the reason for this is the pres-
ence of some carefully labeled classifi-
ers provided by a few users with whom 
the majority of people agree. Accuracy 
under model sharing is not  affected be-
cause the models themselves are shared, 
rather than training data.

The issue encountered in this dataset 
highlights the more general problem of 
data quality when sharing within user 
communities. Data quality can vary 
based on, for instance, the amount of 
user consensus for definitions of each 
activity. Malicious users could even 
intentionally “pollute” shared data. 
CoCo does not currently address this 
issue, although it might be partially 
mitigated by sharing only within social 
networks in which members know and 
trust each other. Existing work investi-
gating reputation systems might be ap-
plicable to this problem, as might CGL 
techniques,9 which can “clean” incon-
sistent and noisy crowd-sourced labels 
prior to training otherwise conventional 
classification models.

Transportation. We concluded our ex-
periments by examining the accuracy 
of transportation mode inference. In 
this experiment, both the features and 
classification model are identical to 
those used in already published work.4 
We test classifier accuracy with train-
ing datasets as small as 400 and as 
large as 3,200 feature vectors per user. 
Training data of this size can be labeled 

by an individual over approximately 13 
to 100 hours, respectively. Figure 3b  
shows the social network graph 
that forms based on solely temporal  

co-occurrence and collocation informa-
tion from the 51 people in this experiment.

Figure 5 indicates that our model 
and data sharing variations can achieve 

Figure 3. The social network graph for the everyday activities and transportation 
datasets. (a) The everyday activities dataset, with 20 people, combines friendship, 
temporal co-occurrence and collocation information. (b) The transportation dataset, 
with 51 people, uses only temporal co-occurrence and collocation information.

(a) (b)

Figure 4. Classification accuracy under different amounts of training data on the 
significant places dataset. This graph indicates classifier accuracy actually falls, 
at times, although the amount of training data is increased. This is the result of 
disagreement as to label semantics between study participants.
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about 30 percent better accuracy than 
the single model, and 20 percent better 
than the isolated model, for all sizes of 
the training set we test. Our experi-
ment demonstrates that data sharing 
can perform with similar accuracy to 
the isolated model when trained with just 
800 labeled feature vectors per user, 
whereas the isolated model requires more  
than 3,200.

As the field of mobile sensing 
matures, researchers are 
increasingly encountering 
the limits of conventional 

approaches to activity recognition. 
Today’s de facto standard practices 
for modeling human behavior rely on 
supervised learning and experiments 
to collect carefully controlled train-
ing data. However, these techniques 
struggle to cope with diverse user pop-
ulations and noisy real-world deploy-
ment conditions. The CoCo frame-
work is contributing to a promising 

new alternative direction for activity 
recognition—one that studies how not 
just individual users, but the commu-
nities in which they live, can be lev-
eraged to better model human behav-
ior17. In this article, we described how 
social networks can be exploited, but 
anticipate this is only one of the many 
opportunities that exist to incorpo-
rate networks of users within sensing 
systems. Ultimately, we believe hy-
brid sensing systems that can intelli-
gently exploit user communities in a 
variety of ways will overcome many 
of the obstacles to human modeling 
that currently prevent widespread us-
age of mobile sensing during everyday  
life.
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