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Abstract. One vision of an opportunistic sensor network (OSN) uses
sensor access points (SAPs) to assign mobile sensors with sensing tasks
submitted by applications that could be running anywhere. Tasked mo-
bile sensors might upload sensed data back to these applications via
subsequent encounters with this SAP tier. In a people-centric OSN,
node mobility is uncontrolled and the architecture relies on opportunistic
rendezvous between human-carried sensors and SAPs to provide task-
ing/uploading opportunities. However, in many reasonable scenarios ap-
plication queries have a degree of time sensitivity such that the sensing
target must be sampled and/or the resulting sensed data must be up-
loaded within a certain time window to be of greatest value. Halo effi-
ciently, in terms of packet overhead and mobile sensor energy, provides
improved delay performance in OSNs by: (i) managing tasking/uploading
opportunity, and (ii) using mobility-informed scheduling at the SAP.

1 Introduction

The initial application focus of wireless sensor networking has been on in situ
monitoring of ecological processes, or on industrial processes and equipment.
Recently we and other researchers in the field have begun to consider the urban
domain with a focus on people-centric [14] [16] [4] [22] sensing and application
development. Architectures in this new domain assume mobile smart phones
and embedded sensing devices equipped with a short-range radio (e.g., ZigBee,
Bluetooth, WiFi) are carried by humans or mounted on vehicles, leading to a
network of sensors with mobility uncontrolled by the sensing architecture [11]
[5]. Such architectures often employ a multi-tiered hierarchical structure where
sensor tasking (i.e., application query assignment) and data collection occur
via mobility-enabled interactions between people-centric mobile sensors (MSs),
and edge wireless access nodes [10] we call sensor access points (SAPs). In this
context, we treat the question of how we may best task MSs and collect data
from MSs in support of delay-aware applications.

Tasking and collection operations can occur when MSs enter the “spheres of
interaction” of the SAPs. Generally, by sphere of interaction we mean the region
(i.e., the physical volume) within which services offered by a node are available
to its neighbors. For the SAP case, to which we limit our discussion in this
paper, these services include tasking and uploading. In practice, the adaptation
of the sphere of interaction is implemented by both transmit power control, and



multihop signaling between a SAP and MSs that happen to dwell for a time
near a SAP. During their stay these may be used to funnel packets from data
collecting MSs to the SAP, and to relay tasking messages from the SAP to MSs.

While applications that use opportunistic sensor networks should be delay
tolerant, we draw a distinction between those that are delay-aware and those that
are not. Delay-aware applications do not warrant real-time treatment, but may
issue queries that have a degree of time sensitivity such that the sensing target
must be sampled, and/or the resulting data must be uploaded, within a specified
time window to be of greatest value. Examples are myriad, and include personal
applications that seek to answer questions like, “Where can I find a quiet place
to study for the next hour”, and public utility applications that say, “Give me
my local weather spotter data in time for the next newscast”. In support of
delay-aware applications, we investigate a number of fundamental performance
issues in OSNs, including the interplay between resource consumption and the
timeliness of tasking and data collection.

To increase the frequency and duration of the sensors’ travel through the
sphere of interaction of a given SAP, the SAP might enlarge its sphere of interac-
tion by increasing its transmission power and/or by building a multi-hop sphere
of interaction. However, a multi-hop sphere of interaction requires increased sig-
naling (e.g., to set up and maintain routes), requiring more energy expenditure.
In a setting with uniform per-link loss probabilities and fixed-power transceivers,
multi-hop communication also implies a higher end-to-end loss probability com-
pared to that possible; in a wireless environment with a link packet loss rate
p the probability of success across n hops is (1 − p)n. Further, increasing the
transmission power of the SAP implies an increased energy drain on the energy-
limited MSs since these must match the higher transmission power of the SAP
for bidirectional communications. Finally, a larger SAP sphere of interaction
disrupts local peer-to-peer sensor communication in a larger part of the field, a
problem of increasing relevance given the recent interest in mobile peer-to-peer
services using localized communication [12] [20] [15].

We design, implement and evaluate Halo, a framework providing algorithmic
and protocol support for managing rendezvous between SAPs and human-carried
and vehicle-mounted mobile sensors in the urban domain. Halo manages oppor-
tunities for tasking and uploading operations via deadline-driven adaptation of
SAP sphere of interaction. When multiple simultaneous operations are possi-
ble, Halo takes a snapshot of the system (i.e., the sensors available for tasking
and uploading in its sphere of interaction, the pending tasking operations, and
the applications waiting for data upload), and incorporates sensor-driven mo-
bility prediction of the available MSs to generate a schedule of the tasking and
uploading operations. This novel scheduling approach integrates a traditional
shortest-job-first approach, and a mobility-based approach tailored for OSNs.

2 Managing Rendezvous Opportunity

There are competing pressures in managing tasking and collection opportuni-
ties. We wish to expand the SAP sphere of interaction to increase the number
of MSs available to task, reduce tasking delay, increase the amount and utility



of sensed data to delay-aware applications, reduce collection delay, and reduce
the likelihood of mobile sensor storage overflow. On the other hand, we wish to
contract sphere of interaction to reduce required energy expenditure of mobile
sensors when transmitting to a SAP, reduce disruption to communications ongo-
ing between MSs in the vicinity of a SAP, and increase the security of the system
by probabilistically reducing overhearing, and explicitly limiting the number of
nodes offering (authenticated) proxy service on behalf of the SAP.
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Fig. 1: Impact of SAP sphere of interac-
tion radius.

We use a simple model of a single SAP
to illustrate the impact of sphere of inter-
action radius on data transfer opportunity
between MS and SAP, required MS transmit
energy, and the SAP interference area. Here,
the radius of the “sphere” (our 2D analysis
can directly be extended to 3D) is a real val-
ued abstraction of the range extension due
to power control only. The trigonometry is
straightforward and is omitted due to space
constraints, but details are available in the technical report [8, Appx I]. Figure 1
shows: (i) the data transfer opportunity (in abstract time units) of a single MS
by plotting the average straight line trajectory length through the SAP sphere of
interaction, assuming the MS maintains a constant unit velocity along the tra-
jectory; (ii) the average transmit energy a MS must use to communicate with the
SAP, assuming a symmetric link and a simplified Friis model with a loss expo-
nent of 4, as it traverses the sphere of interaction along the average length chord;
and (iii) the lower bound on the area disrupted by SAP-MS communications as
the MS travels along the average length chord. Data transfer opportunity grows
linearly with the sphere of interaction radius, while energy cost and SAP inter-
ference experience super-quadratic growth. The tradeoff between data transfer
opportunity, and MS energy and SAP interference impact, motivates a managed
SAP sphere of interaction radius. This illustrative analysis necessarily ignores
important realities of wireless networks: the relationship between transmission
power and physical distance between the SAP and MS is complex due to an-
tenna characteristics, the attenuation by the body [13] and other environmental
factors, and humans typically do not walk along chords. However, we reason-
ably assume that increasing SAP transmission power increases the probability
of interaction between SAPs and MSs, and insofar as this happens the disrupted
area and energy costs to the network also increase. Section 4 provides simulation
results bolstering these numeric arguments.

While there are a number of possible triggers for increasing or decreasing
the SAP sphere of interaction, we believe the fundamental driver for sphere of
interaction adaptation should be fulfilling application requests (i.e., tasking and
collection operations) since this is the metric that mostly closely reflects the
user experience. Generally, we wish to expand the sphere of interaction when
application demands require it, and contract the sphere of interaction at all other
times to reduce energy consumption and channel access contention in the vicinity



of the SAP. In an OSN architecture, the baseline is the lazy approach where we
passively wait on mobility to bring suitable sensors to task, or previously tasked
sensors carrying back sensed data within the radio range of the SAP when the
transmit power is fixed. However, if some sensed data are most valuable if sensed
and/or delivered within a particular time window, an improvement over the
performance of this lazy approach is required.

Assume we have an application query i with which to task the sensor network
that requires data from a particular sensor type (e.g., CO2 sensor). Suppose that
the data must be sensed at time tsi

(min) ≤ t ≤ tsi
(max) to capture the event

of interest (e.g., rush hour pollution), and that a constant Ti exists that reflects
the time it takes to travel from the tasking SAP (which is assumed to know its
location) and the sensing target location defined in the query, using average case
human speed. When an application query is inserted into the SAP task queue
at time t0i , we calculate the time until sphere expansion δ0

si
= (ts(max)

i
− t0i ) −

Ti. If a MS matching the task requirements is available for tasking within the
current SAP sphere of interaction, then no sphere adjustment is necessary and
the tasking operation can proceed. Otherwise, at any time tj a SAP calculates its
sensing-driven sphere adjustment multiplier ξs for query i as ξsi

= (1− δj
si

/δ0
si

).
Similarly, assume for an application query i, an MS was previously tasked

and was able to sample the requested target. Suppose the data must be delivered
back to a SAP by time t ≤ tu in order for the data to have the greatest utility, and
Ti is defined as before. Then at any time tj a SAP calculates its upload-driven

sphere adjustment multiplier ξu for query i as ξui
= (1 − δj

ui
/δs(max)

ui
), where

δs(max)
ui

= (tui
− ts(max)

i )−Ti. Queries not specifying sensing target locations set
Ti=0. Queries not having sensing or uploading deadlines, set ts(max) = ∞ and
tu = ∞, respectively.

We use a small set of power settings at both the MSs and SAPs, and limit the
maximum number of hops of sphere expansion to keep the cost and complexity
of interactions low. The choice of the supported power levels can be arbitrary or
based on historical information kept at the SAP about the number of MSs found
at a given sphere radius. Let P = {p1, ..., pK} be the supported power levels at
each node and let M be the maximum allowed number of hops. Then there are
M · K possible sphere extension settings, and we write the set of settings as
S = {s1, ..., sM·K}, where for sj , the number of hops m = 1 + $ j−1

K
% and the

power setting of the last hop k = j mod(K + 1) (hops prior to the last hop are
at power setting pK).

For a set of tasks Q at a particular SAP, the sphere of interaction is set
according to

s = max

(

⌈

max
Q

(ξsi
) · M · K

⌉

,

⌈

max
Q

(ξui
) · M · K

⌉

)

(1)

Following this rule, the sphere of interaction setting adapts to the current set
of pending deadlines. Taking tasking as an example, as the time tj gets closer
to ts(max)

i
− Ti, then δj

si
goes to 0 and the sphere setting grows to M · K. On

the other hand, if all pending deadlines are far enough in the future, then δj
si

is
still close to δ0

si
and the sphere setting shrinks close to the minimum. While a



number of variations on this scheme are possible, the rule in Equation 1 has the
advantage of encouraging early submission of application queries to the system.
Though outside the scope of our current work, early submission might allow for
query load balancing among SAPs, and smart assignment to particular SAPs.

3 Scheduling Operations

We focus on two scheduling design choices that impact both the efficiency of
communications between the SAPs and MSs, the average operation turnaround
time and the average operation throughput. First, we discuss reasons for serving
a single MS until its operation is completed (or it leaves the SAP range) rather
than switching between multiple MS sessions. Second we discuss how the SAP
determines the order in which it will serve the MSs in its current sphere of
interaction. To support scheduling, the SAP takes a snapshot of the system at
particular points in time. Within this freeze frame, the SAP knows: the set of
application tasks to complete, the set of MSs in the sphere of interaction of a
SAP available for tasking, the set of MSs in the sphere of interaction of a SAP
offering data to upload, the set of applications waiting for particular data, and
an estimation of each node’s proximity and mobility.

Atomic vs. Interleaved Prior experimentation [4] with a testbed of Moteiv
Tmote Invent motes (which use IEEE 802.15.4 radios) shows that at typical
walking speeds and relatively low density of MSs, simultaneous uploading and
tasking results in none of the operations being fully completed using state of
the art sensor network transports. More recently, Miluzzo, et al. have character-
ized [13] the severe radio attenuation caused by the body that will be prevalent
in human-centric networks, that will tend to limit the average contact time be-
tween SAP and MS even if higher data rate radios are used. Because of this
limited contact time, an interleaved approach to operation scheduling (i.e., ei-
ther preemptive or simultaneous uploads and downloads) may not be appropri-
ate. Firstly, a preemptive approach leads to a longer average turnaround time
than non-preemptive scheduling [18] for all operations. Also, with single channel
radios, simultaneous operations implies more MAC layer overhead in terms of
either backoffs or collisions in the case of contention-based MACs, or schedule
maintenance and dissemination in the case of non-contention-based MACs. In-
stead, we take a non-interleaved or atomic approach with at most one active
uploading or tasking session ongoing at each SAP.

Scheduling Discipline To determine the order in-sphere MSs will be served,
a simple approach is to not actively manage the order of operations at all and
just serve MSs in the order they arrive at the SAP until they move out of range.
However, service disciplines like FIFO or even random selection ignore impor-
tant features such as the size (i.e., number of bytes) of tasking and uploading
operations, and the MS dwell time in the SAP sphere of interaction. Thus, these
naive approaches can lead to a lower operation throughput due to non-uniform
MS inter-SAP-visitation times, hereafter orbits.

We propose a hybrid mobility-based/shortest-job-first (MB-SJF) scheduling
algorithm to decide the order in which MSs are atomically served. Let A denote



the event that a tasking or uploading operation supported by the current set of
MSs can be completed before the chosen MS exits the maximum SAP sphere
of interaction obtainable without multi-hop, since multi-hop extension is not
always possible. Uploading and tasking operations are ordered by Prob(A). This
probability reflects the size of the operation to be completed (i.e., number of
bytes b) and the estimated dwell time, tSAP , of the associated MS in the sphere
of interaction. We have

Prob(A) = Prob(tSAP ≥
b

C
+ β), (2)

where C is the wireless channel rate in bytes per second, and β = BO · b
frame size ,

for a CSMA channel. Here, BO is the average MAC backoff interval across the
packets needed to complete the operation, and frame size is the maximum
MAC frame size in bytes. It is worth nothing that with our atomic scheduling
approach, the second term on the right side of the inequality can be driven to
zero if the MAC parameters are tweaked such that a backoff window of zero
is used during an upload/download session between a MS and the SAP (the
standard backoff window would still be used for communication between MSs
and for the MS↔SAP session setup [8, Appx II]).

In practice an empirically-derived mean value estimate of an MS’s SAP dwell
time tSAP is easily tracked by the MS and shared with the SAP each rendezvous.
Cold start effects on tSAP are mitigated by seeding with values averaged across
the MS population. Since we are considering the people-centric sensing domain,
human activity inferred from on-board sensors can aid the MS in further refining
its tSAP estimate. In particular, samples from an accelerometer (embedded in
many new mobile phone devices) can be processed to determine if a person is
standing, walking, or running. In [12], the authors classify between these three
states with an average accuracy of about 90%. Since average dwell times are likely
to be highly correlated with human activity, we propose to keep a separate tSAP

for each classified activity and use this value in calculating Equation 2.
Once Prob(A)i is calculated for each {operation, MS} pair i in the sphere

of interaction, the operation schedule is set in descending order of the value
Prob(A)i ∗ νi. The optional priority factor νi can be used to prioritize certain
event types (e.g., toxic spill) or users (e.g., those with long average orbits), but
the exact meaning is left up to the system administrator and it may be dropped
altogether if user/operation priority need not be supported.

To evaluate the performance of MB-SJF, we simulate a one-SAP/multi-MS
scenario where all MSs are assumed to have data to upload. We compare MB-
SJF with common scheduling disciplines such as first-in-first-out (FIFO), random
selection (RAND), and shortest-remaining-job-first (SJF) in terms of the time
it takes to upload the data from all of the MSs. Each of the MSs is assigned a
file to upload whose size is randomly chosen from an exponential distribution.
MSs move between two states, at-SAP and not-at-SAP, where the dwell times
(tSAP ) in each state are randomly drawn from different exponential distributions
with means λSAP and λSAP , respectively. To simulate a population of MSs with
different mobility characteristics, each node is assigned a unique {λSAP , λSAP }
pair, whose values are uniformly spread between 0 and Nγ, where N is the
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Fig. 2: Advantage of MB-SJF versus other common scheduling disciplines in simulation. MB-SJF con-
sistently completes the upload tasks faster than FIFO, RAND and SJF, across all tested parameter
values for node population and mean file size.

number of MSs and γ is the spreading factor. The simulator updates MS states
synchronously and both the file sizes and the location dwell times are normalized
to its update period. For MB-SJF, it is assumed the MSs report their λSAP and
λSAP values and remaining file size to upload (b) to the SAP upon entering
the SAP’s sphere of interaction (c.f., the beacon reply message in [8, Appx II].
Neglecting MAC effects, from Equation 2 the SAP computes Prob(A) = e−λSAP b

for each node in its sphere. ν = e−λ
SAP prioritizes nodes with long orbits.

In Figures 2(a) and 2(b), we plot the completion rate improvement MB-SJF
gives versus FIFO, RAND, and SJF. Each point represents the average of 1000
trials, each with a different seed for the pseudo-random number generator driving
upload file sizes and location dwell times.

Figure 2(a) shows the completion rate improvement versus the number of MSs
in the simulation, with a fixed mean upload file size of 100. As the MS population
grows, the advantage of MB-SJF steadily increases until settling around a 6-
10% improvement after 60 nodes. MB-SJF, like plain SJF, is able to finish off
small upload tasks quickly, but also takes advantage of mobility information
to opportunely upload from nodes that visit the SAP relatively rarely. Figure
2(b) shows the completion rate improvement versus the mean upload file size
when there are 20 MSs. As expected, for medium size files (implying medium
aggregate upload times), MB-SFJ provides for a relatively constant improvement
in completion rate. As file sizes get larger, the improvement begins to diminish.
As file sizes tend to infinity, so does the completion time regardless of scheduling
discipline, and therefore the possible improvement goes to 0. However, we believe
the typical case for opportunistic wireless uploads from mobile consumer devices
will be small to medium size files (e.g., a 1kB text file, a 1MB image file, a 10MB
audio file). Based on these simulations, MB-SJF seems to be a good candidate
for MS scheduling in the SAP sphere of interaction and we use MB-SJF for
further evaluation in Section 4.

Scheduling Epoch MSs may enter a SAP’s sphere of interaction during an on-
going schedule. In this case, the SAP could ignore all newcomers until its current
schedule is complete and then come up with a new schedule that incorporates
the newcomers, or it might create a new schedule upon the completion of every



operation. In the former case, starvation is prevented, but new sensors that may
rank higher are ignored. In the latter case, more energy is spent and time wasted
by re-running the neighbor discovery after every operation. In Halo, we define
a scheduling epoch of time length E to strike a middle ground. E is adaptive
to the estimated mobility of the MSs involved in the current schedule. Let Ki

represent this set of MSs for a given schedule; then E = max
Ki

(tSAP ). The next

scheduling time is then defined as

tschedi+1
= tschedi

+ min

( n−1
∑

j=1

'schedi

j ,

|K|
∑

j=1

'schedi

j

)

, (3)

where 'schedi

j is the length of the jth operation in schedule i, and n is the ordinal
of the first operation that makes the sum greater than E. MSs that depart the
SAP’s sphere of interaction before their schedule slot are skipped. This method
of addressing starvation is more appropriate than standard aging techniques
since MSs with a lower P (A) (later in the schedule) are not likely to be around
very long and would not be able to take advantage of the aging. Thus, with
the schedule epoch, we focus on getting the higher P (A) operations done rather
than on fairness with respect to starvation.

4 Halo Evaluation

We base our evaluation of deadline-driven sphere of interaction management on
the comparison of three schemes: MIN, ADAPT, and MAX. We use ten SAP
sphere of interaction settings S = {s1, ...s10}, with M = 1 and K = 10, where
setting sj corresponds to a sphere radius of j ∗3 distance units. This relationship
implies a field without radio obstructions, which is unlikely in a people-centric
network. We make this simplifying assumption to avoid making arbitrary as-
sumptions about the deployment environment. Note, however, that transmis-
sion distance will always increase monotonically with transmission power. In the
MIN scheme SAPs always use s1; in the MAX scheme SAPs always use s10; in
the ADAPT scheme each SAP independently varies its radius according to the
sensing deadlines of tasks it is managing. All schemes use MB-SJF scheduling.

Simulation Environment We implement Halo algorithms and the tasking
and uploading communications protocols (see [8, Appx II] for details) in nesC,
and simulate several multi-SAP multi-MS scenarios using TOSSIM/Tython.
TOSSIM simulates Halo on the TinyOS platform, including packet exchange,
timer events, etc. Tython is a Python/Java front end used to manage node mo-
bility and connectivity.

Each simulation trial is conducted on a 500×500 field. MSs are initially placed
uniformly at random across the field and move according to a modified random
walk. MSs choose an activity uniformly at random from {standing, walking,
running} and continue with that activity for a period of time chosen uniformly at
random between 1 and 1200 seconds. According to the chosen activity MSs move
at a rate of, respectively, {0, 3, 15} distance units per second in a direction chosen
uniformly at random, between 1 and 360 degrees inclusive, at the same time the
activity is chosen. MSs bounce off the field boundaries. 50 SAPs are placed
uniformly across the field and remain stationary throughout the simulation.



MSs estimate their tSAP and communicate this estimate to the SAP during
the tasking exchange [8, Appx II] to facilitate the MB-SJF schedule calculation
(see Equation 2). We assume all MSs have an accelerometer that can be used for
activity classification, and use the activity classifier confusion matrix published in
CenceMe [12, Fig 6(a)] to drive the actual and reported mobility characteristics
in the simulation. For example, a MS may be “running” as dictated by the
mobility model, but the MS believes it is running with only 90.9% probability.
With 8.37% probability it thinks it is walking and tells the SAP the wrong
information. Real world effects such as classification inaccuracy (or GPS error if a
GPS system is used as a basis for a dwell time estimate) degrade the performance
of the MB-SJF scheduler. Yet, even under worst case classification accuracy, the
scheduler just behaves as a random scheduler that does not consider mobility.

As no large-scale mobile sensor networks allowing external queries have yet
been built, we make some best guesses at parameters characterizing the task ar-
rival process. Emulating application requests from thousands of backend system
users, tasks arrive independently at each SAP with inter-arrival times drawn
randomly from an exponential distribution with a mean of 10s. Task sizes are
drawn randomly from an exponential distribution with a mean of 10 packets
(packets are 128 bytes long). The sensing deadline (ts(max)) is randomly chosen
for each task from an exponential distribution with a mean of 1000s. The dead-
line threshold T should reflect the time it takes on average to travel the distance
from the tasking SAP to the sensing target (see Section 2). In our simulation,
the T value for a given task is chosen uniformly at random in the interval from 1
to ts(max). This is equivalent to choosing a sensing target uniformly at random
in the field and pre-filtering those tasks whose sensing deadlines do not allow
enough travel time from SAP to target. A task whose sensing deadline passes
before it is assigned to a MS is dropped from the SAP’s task queue. The SAP’s
beacon interval [8, Appx II] is set to 5s.

Each MS has a task queue of size 1, meaning it can only serve one application
query at a time. If a task is partially transferred to a MS before a particular
tasking session completes, the MS caches the state of the suspended session and
resumes the session at the next met SAP. If the sensing deadline of a task that
is partially transferred to a MS expires, the partial state is expunged from the
MS. MSs that are fully tasked and then successfully sense the target generate a
number of data packets to upload chosen randomly from an exponential distri-
bution with a mean of 100 packets. About 20% of the fully tasked MSs end up
reaching their respective target sensing regions prior to their sensing deadlines.
We use an uploading deadline of infinity for all tasks; a MS with data to upload
maintains the state of its upload session across how ever many SAP rendezvous
it takes to complete the upload.

In the following graphs, each data point represents the average of five one-
hour trials, and error bars indicate the 95% confidence interval.

Impact on Tasking/Uploading Opportunity To characterize the impact of
sphere of interaction radius on the opportunity for MS/SAP rendezvous, we run
simulations across a range of MS densities. Results are summarized in Figure 3.
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Fig. 3

In Figure 3(a), we quantify the impact of MS density on the number of MS/SAP
rendezvous, plotting the average number of MS/SAP rendezvous per SAP versus
the number of MSs. The y-axis is in log scale to better show the detail despite the
wide spread between MIN and MAX. Unsurprisingly, the number of rendezvous
generally increases with increasing MS density for MIN, ADAPT and MAX.
Of interest, the ADAPT scheme actually results in more rendezvous for the
intermediate MS densities tested. This is likely due to the dynamism of the
sphere of interaction, resulting in “re-rendezvousing” for MSs that have moved
little (e.g., standing) during the sphere adaptation time scale. The effect becomes
negligible at the lowest densities (10 mobile sensors) since the overall probability
of rendezvous shrinks dramatically. At high densities (i.e., above 400 MSs), this
effect is overwhelmed by the sheer number of mobility-based rendezvous, and at
the highest density (500 MSs) MAX yields more rendezvous than ADAPT since
it always uses the largest sphere radius. Another way to see the effect of MSs
density is to consider the sphere of interaction radius at which most rendezvous
occur. In Figure 3(b), we show the cumulative distribution function (CDF) of
the average number of MS rendezvous per SAP versus SAP sphere of interaction
radius. Curves for 500 MSs and 50 MSs show how at lower densities the majority
of rendezvous occur at higher values of sphere radius. For example, at a sphere
radius of 27 (second largest), in the 50 MS scenario only 40% of the rendezvous
have occurred, while in the 500 MS scenario already 60% have occurred.

Impact on Bytes Transferred and Operations Completed Figure 4 sum-
marizes the performance of the ADAPT scheme in terms of number of task and
upload packets transferred between MSs and SAPs, and the number of tasking
operations completed. Simulations are run across a range of MS densities.

Figure 4(a) shows the average number of tasking operations completed per
SAP plotted in log scale across a range of MS densities. We see that the behavior
of adapting the sphere of interaction radius based on proximity to the sensing-
deadline for a particular task leads to excellent comparative performance for
ADAPT. On average ADAPT completes 85.5% of the tasks MAX does and
nearly 10 times as many as MIN does.
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In Figure 4(b), we provide insight into why the operation completion perfor-
mance of ADAPT is able to remain close to that of MAX. Figure 4(b) shows the
distribution (on the right axis) and cumulative distribution function (on the left
axis) of packets transferred across sphere of interaction radius for the median
density scenario (200 MSs). We see that, in contrast to the rendezvous distribu-
tion shown in Figure 3(b), the packet transfer distribution does not monoton-
ically increase with increasing sphere radius. Rather, the amount of additional
packets transferred at the maximum sphere radius is less than the penultimate
radius, indicating a diminishing return for increasing the sphere radius.

Impact on Disrupted Area Figure 5 summarizes the extent to which an
increased sphere radius impacts the disrupted area. Since MS energy depletion
is proportional to the sphere of interaction radius, we omit explicit energy-related
results here. Figure 5(a) shows the distribution (and CDF) of the time that SAPs
on average spend at each of the 10 sphere of interaction settings when using the
ADAPT scheme. The data are from the median density 200 MS scenario, but
are similar for the other tested MS densities. SAPs spend a plurality of their
time (about 25%) at the lowest sphere setting, implying the minimum possible
disruption. Yet, in aggregate most of the time is spent at or above the eighth



setting. In fact, the average sphere radius is about two thirds of that used by
the MAX scheme. Figure 5(b) reflects this relationship and also indicates that
the disturbed area in the field can quickly get very large as the SAP density
increases (number of MSs is fixed at 200). The MIN scheme disrupts a much
smaller area, but as we see in Figure 4 MIN also transfers and completes tasking
operations at a rate an order of magnitude lower rate than ADAPT.

We define a unified efficiency metric as the average number of operations
completed per unit area disrupted η = Ops/Area. On average across our tested
desities ηADAPT/ηMIN = 0.27 and ηADAPT/ηMAX = 2.18; ADAPT gives a 200%
improvement over MAX., while facilitating a nearly 10× improvement over MIN
in terms of completed operations. While η provides a notion of efficiency, it also
reflects the tradeoff between resource conservation, i.e., disrupted area and MS
energy, and a coarse-grained quality of service in terms of system responsiveness
to application queries.
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Fig. 6: As the deadline threshold T increases, the
SAPs spend proportionally more time at higher
sphere of interaction settings.

In Figure 6, we illustrate how
adjusting the deadline threshold T
can be used to move the operating
point of the ADAPT scheme from
more resource conserving to offering
a lower average completion delay to
application queries. For the 200-MS
scenario, Figure 6 shows the CDF
of the time that SAPs on average
spend at each of the 10 sphere of
interaction settings when using the
ADAPT scheme for different values
of the average deadline threshold, T .
In the previous simulations, T is chosen uniformly between 1 and ts(max), so

T = ts(max)/2. In Figure 6, we adopt the following shorthand: T (i) = ts(max)/2·i.

As T increases, SAPs spend proportionally more time at higher sphere settings,
resulting in more packets transferred and better delay service to the applications
but consuming more resources of the MS cloud (i.e., energy and peer-to-peer
communications opportunities).

Discussion The MIN scheme provides the lowest energy consumption and dis-
rupted area; the MAX scheme provides the greatest opportunity for packet trans-
fer between MSs and SAPs, and thus the highest operation completion rate. In
the previous sections we show that by dynamically adjusting the sphere of inter-
action, i.e., transmit power and hop extension, according to the sensing dead-
lines of submitted application tasks ADAPT hits the sweet spot and provides
increased opportunities for packet transfer and operation completion compared
with MIN, and at a lower cost in terms of disruption to MS P2P communica-
tion compared to MAX. While we do not present explicit MS energy results,
the packet reception energy is directly related to the disrupted area (see Fig-
ure 5(b)) and the packet transmission energy is directly related to the SAPs’
transmit power setting (see Figure 5(a)). MS energy consumption and disrupted



area can be considered as system design parameters based, for example, on MS
battery characteristics and expected P2P application traffic in the mobile cloud,
to drive the selection of the deadline threshold T .

5 Related Work

Managing the SAP sphere of interaction is related to adaptive clustering. Work
from the MANET community proposes various clustering techniques, but in-
variably to increase routing efficiency and/or reduce routing protocol overhead
(e.g., [9] [7] [6] [17]). Zone Routing Protocol [9] sets a zone boundary between
proactive and reactive routing to reduce the number of route request packets
while providing good route acquisition delay. However, a method of determining
an appropriate zone radius is not specified.

A study of adaptive clustering with the end of maximizing operation com-
pletion rate does not exist. The relationship between node density, transmission
power, and neighbor set cardinality has been studied in the context of wireless
graph connectivity [1] [23]. The effects of the relationships between transmission
power, node density, and node mobility patterns on the operation completion
rate have not been reported. A number of existing scheduling policies may be ap-
propriate for SAP operation scheduling, but none have been evaluated with the
unique combination of constraints present in a large scale mobile sensor network,
to the best of our knowledge.

Halo’s adaptation of a SAP’s sphere of interaction is analogous to the “cell
breathing” approach used in cellular telephony and proposed [3] for 802.11 ac-
cess nodes for system load balancing. With a similar aim, the authors of the
SoftRepeater [2] system use a combination of network coding and channel uti-
lization to decide when 802.11 AP clients should become repeaters for others’
traffic in order to address the “rate anomaly problem”. Rather than dealing
with SAP overloading, we address what is in some ways the opposite problem
of application starvation due to under-utilization of the SAP tier.

Power control in cellular systems aims to save handset energy and secondarily
to reduce adjacent cell interference. While we share the first concern, cellular
mechanisms are too complex, and use a separate control channel which is not
generally available on embedded sensing platforms.

6 Conclusion

We have shown how by adapting SAPs’ spheres of interaction Halo can man-
age the opportunity for interaction between mobile sensors and sensor access
points, while striking a balance between resource consumption and operation
completion. Halo uses a new scheduling discipline (MB-SJF), based on mobility
statistics and sensor-based inputs, that is tailored for the typical characteris-
tics of the people-centric sensing domain. MB-SJF is shown to provide up to a
10% increase in operation completion rate compared to FIFO, random selection,
and shortest-job-first scheduling, independent of the gains achievable from SAP
sphere of interaction management. Halo provides improved support for delay-
aware applications in the people-centric sensing context.
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