[Ompu’rer
Networks

www.elsevier.com/locate/comnet

A

Available online at www.sciencedirect.com
|
¥

ScienceDirect

ELSEVIER Computer Networks 52 (2008) 1019-1039

Building resilient low-diameter peer-to-peer topologies

Rita H. Wouhaybi *®*, Andrew T. Campbell ©

& Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
® Department of Electrical Engineering, Columbia University, Intel Corporation, Corporate Technology Group,
Hillsboro, OR 97124, USA
¢ Department of Computer Science, Dartmouth College, Hanover, NH03755, USA

Received 11 June 2006; received in revised form 24 October 2007; accepted 26 November 2007
Available online 8 December 2007

Responsible Editor: L.G. Xue

Abstract

As more applications rely on underlying peer-to-peer topologies, the need for efficient and resilient infrastructure has
become more pressing. A number of important classes of topologies have emerged over the last several years, all with var-
ious strengths and weaknesses. For example, the popular structured peer-to-peer topologies based on distributed hash
tables (DHTS) offer applications assured performance, but are not resilient to attacks and major disruptions that are likely
in the overlay. In contrast, unstructured topologies where nodes create random connections among themselves on-the-fly,
are resilient to attacks but can not offer performance assurances because they often create overlays with large diameters,
making some nodes practically unreachable. We propose Phenix, a peer-to-peer algorithm for building resilient low-diam-
eter peer-to-peer topologies that can resist different types of organized and targeted malicious behavior. Phenix leverages
the strengths of these existing approaches without inheriting their weaknesses and is capable of building topologies of
nodes that follow a power-law while being fully distributed requiring no central server, thus, eliminating the possibility
of a single point of failure in the system. We present the design and evaluation of the algorithm and show through extensive
analysis, simulation, and experimental results obtained from an implementation on the PlanetLab testbed that Phenix is
robust to network dynamics such as bootstrapping mechanisms, joins/leaves, node failure and large-scale network attacks,
while maintaining low overhead when implemented in an experimental network.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Peer-to-peer networks; Resilient networks; System design; Simulations; Experimentation with real networks/testbeds

1. Introduction

Over the past several years, we have witnessed

the rapid growth of peer-to-peer applications and

_— ) the emergence of overlay infrastructure for Internet,

Corresponding author. Address: Intel Corporation, MC: JF2- h . manv challen remain this n field
55,2111 NE 25th Avenue, Hillsboro, OR 97142-5961, USA . Tel.: owever, many challenges remain as this new ne

+1 503 712 4887. matures. The work presented in this paper addresses

E-mail address: rita.h.wouhaybi@intel.com (R.H. Wouhaybi). the outstanding problem of the construction of

1389-1286/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2007.11.018


mailto:rita.h.wouhaybi@intel.com

1020 R.H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039

resilient peer-to-peer networks and their efficient
performance in terms of faster response time and
low-diameter operations for user queries. Low-
diameter networks are often desirable because they
offer a low average distance between nodes, often
in the order of O(logN). The two classes of peer-
to-peer networks, found in the literature, either offer
better resilience to node dynamics such as joins/
leaves, node failure and service attacks, as in the
case of unstructured networks [15,30], or, they offer
better performance as in the case of structured net-
works [26,31,35]. Because of the inherent tradeoffs
in the design space of these different classes of
peer-to-peer networks, it is difficult to simulta-
neously offer better performance and resilience with-
out having to reconsider some of the fundamental
design choices made to develop these network sys-
tems. We take one such alternative approach and
propose a peer-to-peer algorithm that delivers both
performance and resilience. The proposed algorithm
builds a low-diameter resilient peer-to-peer network
providing users with a high probability of reaching a
large number of nodes in the system even under con-
ditions such as node removal, node failure, and
malicious system attacks. The algorithm does not
impose structure on the network, rather, the estab-
lished graph of network connections has the goal
of creating some order from the total randomness
found in resilient unstructured networks, such as,
Gnutella [15] and KaZaA [30].

Unstructured peer-to-peer networks, such as
Gnutella, offer no guarantee on the diameter
because nodes interconnect in a random manner,
resulting in anything other than an efficient topol-
ogy. These unstructured systems are often criticized
for their lack of scalability [27], which can lead to
partitions in the network resulting in small islands
of interconnected nodes that cannot reach each
other. However, these same random connections
offer the network a high degree of resiliency where
the operation of the resulting network as a whole
is tolerable to node removal and failure. In contrast,
structured peer-to-peer networks based on distrib-
uted hashing tables (DHTs), such as Chord [31]
and CAN [26] have been designed to provide a
bound on the diameter of the system, and as a
result, on the response time for nodes to perform
queries. However, these systems impose a relatively
rigid structure on the overlay network, which is
often the cause of degraded performance during
node removals, requiring non-trivial node mainte-
nance. This results in certain vulnerabilities (e.g.,

weak points) that attackers can target and exploit.
Due to the design of DHTSs, these structured topol-
ogies are also limited in providing applications with
the flexibility of generic keyword searches because
DHTs rely extensively on hashing the keys associ-
ated with objects [2,9].

These observations motivate the work presented
in this paper. We propose Phenix, a scale-free algo-
rithm that constructs low-diameter P2P topologies
offering fast response times to users. An important
attribute of Phenix is its built-in robustness and
resilience to network dynamics, such as, operational
nodes joining and leaving overlays, node failures,
and importantly, malicious large-scale attacks on
overlay nodes. The main design goals of Phenix
can be summarized as follows: to construct low-
diameter graphs that result in fast response times
for users, where most nodes in the overlay network
are within a small number of hops from each other;
to maintain low-diameter topologies under normal
operational conditions where nodes periodically
join and leave the network, and under malicious
conditions where nodes are systematically attacked
and removed from the network; to implement sup-
port for low-diameter topologies in a fully distrib-
uted manner without the need of any central
authority that might be a single point of failure,
which would inevitably limit the robustness and
resilience of peer-to-peer networks; and to support
connectivity between peer nodes in a general and
non-application specific manner so a wide-variety
of applications can utilize the network overlay infra-
structure. An important property of Phenix is that it
constructs topologies based on power-law degree
distributions with a built-in mechanism that can
achieve a high degree of resilience for the entire net-
work. We show that even in the event of concerted
and targeted attacks, nodes in a Phenix network
continue to communicate with a low-diameter
where they efficiently and promptly rearrange their
connectivity with little overall cost and disruption
to the operation of the network as a whole. To the
best of our knowledge Phenix represents one of
the first algorithms that builds resilient low-diame-
ter peer-to-peer topologies specifically targeted
toward, and derived from, popular unstructured
P2P network architectures, such as, Gnutella [15]
and KaZaA [30].

In this paper, we present the design of the Phenix
algorithm, first presented in [34], and evaluate its
performance using analysis, simulation, and experi-
mentation. We make a number of observations and



R H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039 1021

show the algorithm’s responsiveness to various net-
work dynamics including systematic and targeted
attacks on the overlay infrastructure. We implement
and evaluate Phenix using the PlanetLab testbed
[24]. Experimental results from the testbed imple-
mentation quantify the algorithm’s overhead and
responsiveness to network dynamics for a number
of PlanetLab nodes. The paper is structured as fol-
lows. We discuss the related work in Section 2 and
present the detailed design and operations of Phenix
in Section 3. Section 4 presents a detailed evaluation
of the algorithm’s operation, followed by Section 5,
which presents experimental results from the imple-
mentation of Phenix on the PlanetLab platform.
Finally, we present some concluding remarks in Sec-
tion 6.

2. Related work

Traditionally, low-diameter networks tend to
appear in social networks forming small-world
topologies [4], while power-law behavior is often
seen in many natural systems as well as man-made
environments [1,12,16]. These observations led to
a body of work related to analyzing and modeling
of such networks [4,8,19,20]. The contribution dis-
cussed in [7] on preferential attachment has been
influential in our thinking. However, the idea of
preferential attachment is used in Phenix as a basis
to ensure resiliency in a fully distributed, dynamic
peer-to-peer environment. The work on peer-to-peer
networks presented in [11] makes use of small-world
algorithms based on the proposition by Watts and
Strogatz [33] on ‘“‘rewiring” the network. In [11],
the idea of rewiring is applied to a Chord [31] over-
lay. Pandurangan et al. [22,23] create a low-diame-
ter peer-to-peer network but rely heavily on a
central server that is needed to coordinate the con-
nections between peers. This proposal creates a
potential single point of failure in the overlay net-
work. The authors also do not address the resilience
of such a network in the event of targeted node
removal, various attacks, or misbehaving nodes.
Under such conditions the performance of the net-
work would likely degrade and deviate from the
low-diameter design goal.

A family of structured peer-to-peer topologies
relying on DHTs, such as Chord [31], CAN [26],
and Tapestry [35], has attracted considerable atten-
tion in the P2P and overlay community. However,
such networks might be limited because they unduly
restrict the queries that the users can initiate (e.g.,

keyword queries) due to the use of hashing tables
to store objects at overlay nodes. These networks
also couple the application to the underlying infra-
structure layer, which makes them attractive to spe-
cific applications, but the infrastructure may need to
be revised to support changing needs of users. The
idea of differentiating the rank of different overlay
nodes (e.g., a super node over a regular node) in a
peer-to-peer network has been used by a number
of systems in order to achieve better performance.
For example, KaZaA [30] uses the notion of “super-
nodes”, and Guntella v.0.6 [15] uses ‘“‘ultrapeers”
[32] as supported by the Query Routing Protocol
(QRP) [25]. KaZaA creates supernodes among peers
by assigning an elevated ranking to nodes with a fas-
ter connectivity such as broadband Internet access.
However, the implementation details of these popu-
lar P2P schemes are not open or published, which
makes it difficult to make a comparative statement
on the deployed algorithms. Ultrapeers are a stan-
dard feature of Gnutella v.0.6, constituting an essen-
tial element of QRP, as mentioned above. Ultrapeers
differ from what we propose in Phenix in a number
of ways. First, ultrapeers act as servers in a hierarchy
that is widely known by all other nodes in the net-
work. As a result of this predetermined hierarchy,
ultrapeers create a number of vulnerabilities in the
system. If ultrapeers were forcefully removed from
the network by an attacker, the system would suffer
considerably; potentially fragmenting the remaining
nodes into disconnected smaller partitions. Another
vulnerability arises when malicious nodes assume
the role of ultrapeers and mislead other nodes into
relying on them for services. An ultrapeer does not
use lower level nodes (also called leaves) to relay
traffic to other ultrapeers in the network, rather,
ultrapeers interact directly with each other. Such
reliance could create disconnected groups of nodes
in the event that ultrapeers unexpectedly drop out
of the network in an uncontrolled manner due to
node failure or forceful removal. Each ultrapeer also
keeps state information related to the data held by
leaf nodes that are connected to it. Creating such a
hierarchy that is closely tied to the application level
may call for a complete redesign in the event that
the application’s needs change or new applications
need to be efficiently supported. While some recent
work [10,13] have proposed solution to creating
low-diameter P2P topologies, our work differs as
we assume that nodes would not want to re-wire of
flip any of their existing connections. In some appli-
cations and uses, re-wiring can be acceptable,



1022 R.H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039

however, we assume that the level of trust among
nodes is not high enough in order to make allow
for changing of neighbor connections.

In our work, we make a distinction between the
type of information carried by packets and the rout-
ing decisions that are made. RON [6] and i3 [3] have
already been designed based on this approach,
where a generic topology is proposed that is inde-
pendent of the application that makes use of it.
Such a topology would be an asset for smart search
algorithms [2,9] that direct queries instead of flood-
ing the entire neighborhood of the requesting node.
Finally, in the context of security, secure peer-to-
peer and overlay networks have been proposed as
policies to protect individual nodes against denial
of service (DOS) attacks in the SOS [18] and May-
day [5] systems, but not in the context of an overall
resilient P2P network architecture. Phenix addresses
the resilience of the entire network and not the indi-
vidual nodes.

3. Phenix peer-to-peer networks

We build the case for networks whose degree fol-
lows a power-law distribution and the resulting ben-
efits especially for a peer-to-peer topology in Section
3.1. In Section 3.2, we describe Phenix, our pro-
posed algorithm, and present an example. We then
discuss additional mechanisms that are imple-
mented on nodes in Phenix to maintain the resil-
ience of the network in Section 3.3. We assume
that nodes forming a peer-to-peer topology using
Phenix will start by interconnecting randomly, but
then after an initial small set of nodes, the rest of
the nodes joining will start using Phenix to deter-
mine their connections to the existing nodes. Since
it is important to determine the tradeoffs in the
choice of the size of the initial set of nodes, we look
at it in Section 3.4.

3.1. Power-law properties

The signature of a power-law or a scale-free net-
work lies in its degree distribution, which is of the
form presented in the following equation:

p(K) ~ K. (1)

Many networks tend to have an exponent y close to
2, for example, the Internet backbone connectivity
distribution is a power law with an exponent
y=22+0.1 [12]. As a result of this distribution
some nodes are highly connected and can act as

hubs for the rest of the nodes. These nodes and their
position in the network contribute to a highly desir-
able characteristic of these graphs: a low “almost
constant” diameter, defined as, the average shortest
path between two nodes in the graph. This graph is
capable of growing while maintaining a low-diame-
ter hence the name scale-free networks. Typically,
peer-to-peer networks suffer from a large diameter,
which often causes the generation of more network
traffic. This is inefficient because it requires nodes to
either increase the radius of a search for an object,
or opt for a low radius search, which would limit
the probability of finding less popular objects in
the network. These design trade offs result in in-
creased signaling or degraded performance. In the
light of these observations, it seems natural to con-
struct a peer-to-peer topology that conforms to a
power-law for its node degree distribution. How-
ever, for a proposed algorithm to be feasible, it must
adhere to a number of design restrictions. First, the
algorithm should be easy to implement and make
few assumptions about the underlying network.
Despite the problems associated with Gnutella, its
deployment is widespread as a result of the simplic-
ity of the underlying protocol [15]. Next, the algo-
rithm should be fully distributed based on local
control information, and not include any centraliza-
tion of control, which might become a bottleneck or
a target for attacks. Finally, the algorithm should be
robust to node removal whether random or tar-
geted. This means that the network should not be
easily partitioned into smaller sub-networks and
should be capable of maintaining a high level of
resiliency and low-diameter in the face of node re-
moval. The main motivation behind Phenix is to al-
low nodes in the network to “organically” emerge as
special nodes (called preferred nodes) with a degree
of connectivity higher than the average, so that a
scale-free topology can be formed. In other words,
we do not dictate special nodes or hierarchies in ad-
vance for the topology to emerge or the network to
function. As shown in [7], such networks appear in
nature due to preferential attachment, where new-
comers tend to prefer connecting to nodes that al-
ready have a strong presence characterized by
their high degree, and the dynamic nature of such
networks involving growth. By examining social
networks, we can observe the following; if someone
joins a new social network, the first network of
“friends” is pretty much random. However, most
people, after seeing that a specific person has more
acquaintances and is better connected to a larger



R H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039 1023

number of members in that specific network, tend to
acquire a connection to that person in order to gain
better visibility. In fact, [7] shows that if a new node
has knowledge of the states of all the existing nodes
in the network and their interconnections, it can
connect to the nodes with the highest degree giving
it the highest visibility and putting it in a place
where it is a few hops away from the rest of the net-
work. This will guarantee that the resulting network
has a degree distribution conforming to a power-law
resulting in a low diameter. However, in a peer-to-
peer network having such a global view is practi-
cally impossible, since most nodes typically can only
see a small fraction of the network, and have to
make decisions based solely on local information.
We present the detail design of the Phenix algorithm
in the next section and show the emergence of a
power-law topology through simulation and experi-
mental results in Sections 4 and 5, respectively.

3.2. Phenix algorithm design

In what follows, we describe the Phenix algo-
rithm for the simple case where nodes join the net-
work. A node obtains a list of addresses using a
rendezvous mechanism by either contacting a host
cache server [14] or consulting its own cache from
a previous session in a fashion similar to an initial
connection, as described in Guntella v0.6 [15].
However, instead of establishing connections to
“live” nodes from the returned list, the joining node
divides these addresses into two subsets, as
expressed in Eq. (2): that is, random neighbors
and friends that will be contacted in the next step.
The reason for this division is to create few random
connections through G andgoms, but then use the sec-
ond subset Gyiengs; in order to query them and create
preferred attachments as we explain next.

Ghost,i = [Grandomti; Gfriendsj]~ (2)

Then i initiates a request called a “ping message” to
the nodes in the list Ggrienas;» Sending a message of
the form:

My = (source =i, type = ping, TTL =1, hops = 0).
3)

Each recipient node constructs a “pong message” as
a reply containing the list of its own neighbors,
increments the hops counter, decrements the TTL,
and forwards a new ping message to its own neigh-
bors, as follows: M, = (source =i, type = ping,

TTL =0, hops = 1). Each node j receiving such a
message will send no pong message in reply, but in-
stead add the node i to a special list called I'; for a
period of time denoted by 7; this is a essential step in
order to disable crawling of the network as a possi-
ble attack mechanism by malicious nodes.

Following this procedure, the node i obtains a new
list of all the neighbors of nodes contained in Gyriengs.;
and adds to a new list denoted by Giandigatesi- Then i
sorts this new set of nodes using the frequency of
appearance in descending order, and uses the top-
most nodes to create a new set that we denote as
Gpreferred,iy where Gpreferred,i c Gcandidates,i- BaSicaHy, this
step is a popularity contest where node i is trying to
determine the most popular nodes using the obtained
friends lists. Thus, the resulting set of neighbors to
which i creates connections i8S G; = [Grandom.;
Gpreferred,i] .

Node i opens a servent (server—client) connection
to a node m (m is in the list Gpreferrea;) Where the
word servent is a term denoting a peer-to-peer node,
which is typically a server and a client at the same
time as it accepts connections as well as initiates
them. Then node m checks whether i is in its I',, list,
and if this is the case, increments an internal counter
¢, and compares it against a constant y. If ¢,, > 7,
then ¢,, = ¢,, — 7, a connection is created to node i,
which we call a “backward connection”, and the
set of neighbors added as backward edges is
updated, as follows: Gpackwardm = Gpackward, U{}-
This backward connection creates an undirected
edge between the two nodes i and m (i < m) from
the initial directed edge, as i — m. In addition, vy
ensures that a node does not add more connections
than d,, ,,/y where d;,,, is the in-degree for node m,
or the number of its incoming connections. The
intuition behind this step is to create selective con-
nections from the preferred nodes to the nodes con-
necting to them, and we achieve this by adding such
one connection for every y new nodes connecting to
the preferred node.

When node i receives a backward connection from
node m it will consider its choice of node m as a good
one, and accordingly update its neighbors lists:
Gpreferred,i = Gpreferred,i - {m}, and Ghighly_preferred,i =
Ghighly_preferred,; + {m}. The final list of neighbors for
node i is:

Gi = [Grandom,h Gpreferred,h Ghigllly_preferred7i> Gbackwelrd,i]-

The pseudocode for node connections in Phenix is
presented in Fig. 1, and an example of the creation
of G; is presented in Fig. 2, for illustration purposes.



1024 R.H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039

In this particular scenario, the existing overlay net-
work is shown in Fig. 2 where the interconnections
between nodes are shown with arrows, with the bold
arrows representing connections that were created
by preferential and backward formation. In the sce-
nario, node 8§, wants to join the network and goes
through the process shown in Fig. 2. Node 8§ starts
by obtaining a list of hosts that are present in the
network and then divides this list into two sub-lists
where Grangom = [1,3] and Ggienas = [5,6]. Then it
contacts the nodes contained in Grjengs to obtain
their lists of neighbors and constructs the following
list Geandidates = [7,2,4,7]. Sorting the nodes in
descending order using their frequency of appear-
ance yields Gpreferrea = [7, 2]. Then node 8 constructs
the final list G = Gpreferred | Grandom = [7,2,1,3] and
connects to these nodes. Note, that as node 8 starts
its servent sessions with the resulting nodes in G
then one or more of them might choose to create
a backward connection to node 8 depending on
the values of their respective counters c.

3.3. Network resiliency

According to the Webster Dictionary [21], the
word resilience is defined as “an ability to recover
from or adjust easily to misfortune or change”. Net-

works with power-law degree distributions are often
criticized in the literature for collapsing under tar-
geted attacks. Under such conditions if a small frac-
tion of the nodes with high degrees is removed from
the network then the whole network suffers and
often becomes disconnected into smaller partitioned
fragments, also referred to as “islands” in the liter-
ature [7].

Phenix attempts to make connections resilient,
protecting the well being of the entire network.
We achieve this goal by following a set of guide-
lines that can be summarized, as follows. First,
we attempt to hide the identity of highly connected
nodes as much as possible, making the task of
obtaining a comprehensive list that contains these
nodes practically impossible. The second deterrent
deals with neighbor updates, or what we call
“node maintenance” (discussed below), where a
network under attack can recover when existing
nodes rearrange their connections and maintain
connectivity.

Note, that we assume that an attacker is powerful
enough to force a node to drop out of the network,
whether by denial of service attacks or by any other
mechanism available, once an attacker acquires the
IP address of such a node. In Phenix networks, resil-
iency implicitly means: the resilience of the whole
network consisting of all “live” nodes where their

connect_to_network(:) {

obtain a list of existing nodes Gj,s; from web cache;

divide Ghost into Grandam and Gfriends;
connect_preferrential(i, G fricnds);

connect_random(i, G,qndom); }
connect_random(i, G) {

open connections from 7 to all nodes in G;}

connect_preferrential (i, G) {
let s be the size of G}
G(:andidates = @;
for(z =0,z < s;7++) {
k = G[z];

send My; where My = ping(i, k, 1, 0)

node & sends back the list of its neighbors: G[k];

Gcandidates = Gua'ndidatets U G[k‘}y }

sort Geandidates DY frequency of appearance and make its elements unique;

G = Gcandidates [O(S - 1)]’

node ¢ connects to all nodes in G[i]

Grandom ) Gpreferred;

if (( j connects back to ¢) && (j € Gpreferrea)) { // flag j as highly preferred

Gpreferred = Gpreferred - {,}}’

Ghighly_prefe?red = Ghighly_p'refﬁ'rred + {]}5 }

Fig. 1. Pseudocode for Phenix.



R H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039 1025

Fig. 2. Example of Phenix overlay construction.

connections form edges in a graph that is as close to
a strongly connected graph as is possible, as we will
show in Section 4.

3.3.1. Hiding node identities

In order to limit the likelihood of a malicious
user obtaining a global view of the whole overlay
graph (formed by the live nodes) of the network,
Phenix supports three important mechanisms. First,
a node receiving a ping message M, will respond
with a pong message, and forward a ping message
M, to its neighbors. All nodes receiving M, will
add the originator to a list denoted by I';. This list
supports the notion of either “temporary blocking”
or “black listing”, where if the same originating
node sends a ping message with the intent of “crawl-
ing” the network to capture global or partial graph
state information, such a message will be silently
dropped with no answer/response sent back to the
originating node. Black lists can be shared with
higher layer protocols to isolate such malicious
practices and can serve to isolate such nodes. A
mechanism that detects a node crawling the network
and silently discards queries will not stop a mali-
cious user, but rather, slow its progress because
the malicious node needs to obtain a new node ID
(e.g., this would be similar to the Gnutella ID) to
continue the crawl of the overlay, or wait for
enough time for nodes to purge their black lists
I';. Peer-to-peer networks such as Guntella [15] have
proposed including the MAC address as part of the
node ID, making it even more difficult for an
attacker to obtain a new and distinctly different
node ID at a rate fast enough to continue the crawl.
It is worth noting that if joins/leaves of an overlay
network are dynamic enough then crawling at
slower time scales will not yield an accurate view
of the network state and topology. Even though
such a scheme helps limit the impact that malicious

nodes can have, it still does not fully eradicate
potential attacks on the network.

Next, Phenix also employs the policy of silently
dropping any ping message, similar to the one
shown in Eq. (3), whose TTL value is greater than
1. A non-conforming node with malicious intent
might generate such a message. Nodes drop these
messages without responding to the originator or
forwarding such a message to neighbors. This has
the effect of eliminating crawling even if the origi-
nating node is not on the list I'; of the receiving
node, in contrast to Gnutella where crawling is
often practiced.

Third, a node that establishes backward connec-
tions to other nodes in the network will not return
these connections when it receives a ping in any of
its pong reply messages. This policy is not meant
to protect the node’s Gpackwara SUb-list of neighbors.
Rather, it protects the identity of the node itself and
any possible preferential status that the node may
have, from an attacking node. If an attacker were
to receive a long neighbors list from a node, it can
infer that such a node is a highly connected node
from the size of its neighbors’ list. Thus, a node will
only return the subset Goysige_worla defined by Eq. (4)
in a pong message. In this case, this node does not
need to forward M, to all of its neighbors. Rather,
it only forwards M to nodes in its Goysige_world SUD-
set since these are the nodes that might risk expo-
sure to an attacker, where,

Goutside_world = [Grandom7 Gpreferred» Ghighly_preferred]- (4)

3.3.2. Node maintenance mechanism

In the event of an attack, the network needs to be
responsive and able to rearrange connectivity in
order to maintain strong connections between its
nodes. In what follows, we propose a state probing
mechanism that makes Phenix responsive to failed



1026 R.H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039

nodes or nodes that drop out of the overlay because
of attacks. The number of neighbors of a node i,
represented by #;, is defined as the summation of
the number of neighbors obtained through random,
preferred and backward attachments; in other
words, the out-degree of the node defined as the
total number of outgoing connection for a node i.
This total number is expressed as i; = h} + AP + hP,
where h° =0, if i ¢ [preferred nodes]. 4}, #°, and
Y represent the number of random, preferential
(standard and highly), and backward neighbors,
respectively. Nodes examine their neighbors’ table
in order to make sure that they are not disconnected
from the network due to node departures, failures,
or denial of service attacks. If the following Inequal-
ity h; + hP < threshold is satisfied, signaling a drop
below a pre-defined threshold, then node i runs a
node maintenance procedure, as described below.
During node maintenance, nodes are trying to keep
track of how many random neighbors they have
versus preferred neighbors. When they notice a drop
in preferred nodes, they launch an aggressive algo-
rithm acquiring more preferred nodes than random
ones. This is particularly important when the net-
work is under targeted attacks aiming at highly con-
nected nodes, and encourages the rapid promotion
of existing nodes to become preferred ones as we
will show in Section 4. When the network goes back
to a stable state, where preferred nodes are leaving
the network gracefully, nodes will slowly change
their aggressive strategy and start shifting the ratio
of their neighbors to its initial value. What follows
next is a formal presentation of this node mainte-
nance algorithm.

If a node on the /’s neighbors’ list leaves the net-
work gracefully, then it informs all the nodes con-
necting to it by closing the connections. However,
if a node is forcefully removed or fails then node i
will be informed of this fact only through probing
where a message is sent to its neighbors, as follows:
M, = (source =i, type = ping, TTL =0, hops = 0).
In the case where no answer is received after a
timeout (which is discussed in Section 5) then the
neighboring node is declared down. The number
of neighbors before node maintenance can be
expressed as follows: A, (t,) = hi(t,—1) —d;(t,) —
d®(t,) —d(t,), where, h; (t,): current number of
nodes (prior to the last maintenance run), and
d;(t,), d®(t,), d°(t,): the number of neighbors (ran-
dom, preferential, and backward, respectively) lost
since the last node maintenance. Following the node
maintenance, we have:

hi(t) = - (tn)s threshold < 4, (t,) — A" (£,) < max,
S By (6) 4P (8) + 1 (2,), otherwise,

(5)

where, #;(¢,): the number of neighbors after the
node maintenance and u!(,), u!(¢,): the number of
new neighbors added preferentially and randomly,
respectively. The ratio of preferential and random
neighbors for a node i is presented in the following
equation:

A hi ()
%) =y M max —ie )

<o(ty) <1, Viyn

(6)
and the initial value of « is expressed by: o;(¢y) =
1, Vi.

The update of neighbors is then performed
according to the following equation:

[ db(t,) > 0,
0’ d?(t") = 07
(7)

where 7;(t,) = >, _, ;147 (t)/1. Ti(t,) is the average
number of preferential neighbors that dropped out
over the last / node maintenance cycles, measured
at time ¢,, mu® is the expected value of the number
of neighbors that disappeared in one node mainte-
nance cycle. The symbol [] rounds up the value to
the next highest integer. Therefore, the final number
of neighbors is

th(tO)v u?(tn)<h$(t0)7h;p(tn)v
B (t) = () F b (6,), P (1) <max—hP(6,) — (r,),
max—#h;(t,),

ui(t,) = d;(t,) and u}(t,) = {

otherwise.
(8)

For preferred nodes, we already have the following
approximation: 4 = [*=7], where ; is the number
of nodes pointing to node i. The preferred node up-
dates its ¢; counter, as follows: ¢; = ¢; + (y X d?’(tn)),
while no nodes are added in the backward set dur-
ing the node maintenance process. Analysis of the
effect of o on the network’s behavior, particularly
when faced with large-scale attacks is discussed in
Section 4.

3.4. Preferential nodes

In this section, we look at the effect of starting
our peer-to-peer network with a subset of node
inter-connecting randomly (without implementing



R H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039 1027

any preferential attachments). After the number of
nodes reaches a certain threshold, any incoming
node will uses Phenix in order to determine the list
of its neighbors. In what follows, we analyze the
emergence of nodes with a degree deviating from
that of the average of the network. We call such
nodes preferred nodes.

Let us assume that we initially have a network of
N nodes interconnected randomly. A new node i,
running the Phenix algorithm wishes to connect to
this network. So, i acquires a list of friends using
a rendezvous or bootstrapping mechanism similar
to the one used by many P2P systems. As described
earlier, node 7 contacts these friends asking for their
respective lists of neighbors. The summation of all
answers constitutes the list of candidates. It follows
that after node i acquires the list of Geundidatesi> the
probability of connecting to a node on the list is
directly proportional to the frequency of appear-
ance of that node; that is to say, it is equal to the
probability that a node will appear more than once
in its list of candidates.

Let, u be the average number of neighbors and N
the number of nodes in the network. A new node i
will connect to p/2 nodes randomly in Grandom.s
since o;(tp) = 1,Vi, and will contact u/2 nodes
requesting a list of their neighbors, which will
become Geungidates;- Thus, the resulting number of
nodes on this latter list is an average of x?/2. Since
we are interested in nodes appearing more than once
on this list (which translates to a higher probability
in initiating a connection to one of them), we calcu-
late the probability of a node j appearing at least
twice, which is expressed as the summation of the
probabilities that j appears 2,3,...,m times, where
m = p/2. This upper bound of m comes from the
fact that a node can appear at most once in each list
returned by one node of the sub-list G angidates,;- Thus
the probability of a node appearing twice becomes
the probability that it is on two of the lists of nodes
in Geandidates.i» and similarly, three appearances signi-
fies the presence on three lists, and so on until m.
Therefore, the probability that a node appears at
least twice, encouraging a preferential attachment
in a Phenix setup is given by the following equation:

P(X>2) = ip(x =)

0.8}

0.6

0.4}

0.2

Probability of Preferrential Attachment

Average Number of Neighbors

Fig. 3. Probability that a preferred node appears.

Now that we know the value of the probability of a
preferential attachment, we are interested in analyz-
ing how fast such an attachment will take place (as
the network grows) assuring the evolution of the
network graph from a random network to one
based on power-laws. Fig. 3 plots the probability
derived in Eq. (9) versus the average number of
neighbors for different values of N, the initial ran-
dom network. We can observe that it is desirable
for the initial network to be small so that preferen-
tial attachments start to form as early as possible;
for example, given an initial Phenix network of 20
nodes, and 5 neighbors on average the probability
of preferential attachment is around 0.1562. This
means that with the seventh node joining the net-
work, at least one preferential attachment is formed.
It follows that after one preferential attachment
forms, the probability of a second preferential
attachment increases since the probability of this
node appearing more than the others is already
biased. Note that N is not the total number of nodes
in the final overlay, but only the first initial nodes
that come together in the network. Clearly, the
overlay network can grow to encompass a much lar-
ger number of nodes, and at that time Eq. (4) no
longer holds because the connections among nodes
is not random, but biased, forming a power-law,
as we have just shown in this section.

4. Simulation

In what follows, we discuss the results obtained
from implementing the Phenix algorithm in a simu-
lation environment based on Java software. We
start by examining the emergence of a power-law
where nodes enjoy a low-diameter. We then study



1028 R.H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039

different types of attacks on an overlay network
using the Phenix algorithm to measure the net-
work’s degree of resilience. Finally, we discuss the
sensitivity of Phenix to different bootstrapping
mechanisms.

4.1. Power-law analysis

Degree distributions following power-laws tend
to appear in very large networks found in nature
[7,8]. However, we would like to have an algorithm
where such a distribution will be present in net-
works of modest size. Such an algorithm might be
useful in different situations for various applications
where an assurance of a large number of nodes
might not be feasible. We studied the effect of creat-
ing a network of pure joins in order to be guaran-
teed of the emergence of a power-law in such a
simple scenario. The nodes join the network follow-
ing a normal distribution at simulation intervals, by
acquiring neighbors’ connections based on the Phe-
nix algorithm. Plotting the degree distribution for
the resulting network of a 1000-node on a log-log
scale shows a power-law emerging in Fig. 4a. This
property is more clearly observed for a network of
100,000 nodes, as observed in Fig. 4b. We further
look at the changes in degree distribution and how
it affects the power-law in Section 4.3.

The remainder of this discussion shows the low-
diameter of the network rather than the degree dis-
tribution, since nodes are often more interested in
how many nodes they can reach with a small num-
ber of hops. In fact, the simulation results show the
signature of a scale-free network where the diameter

1000 T T

100 | 1

10 ¢ - ;

+ o+

(a) Degree Distribution for 1,000 Nodes

1 10 100 1000

does not increase proportionally to the number of
nodes, but instead follows the logarithm of the
nodes in the network.

4.2. Attack analysis

Next, we study more sophisticated networks
where nodes join and leave the network using differ-
ent scenarios. The attacks analyzed in this section
are aggressive and to some extent extreme requiring
additions of nodes to the network that probably
would not be typical of an attacker in a practical
network. However, we chose to include such an
analysis in order to test the limit at which the Phenix
algorithm is capable of adapting, and the point
beyond which the network does not serve its pur-
pose anymore of interconnecting participants to
each other.

We consider a number of attack scenarios where
an attacker can perform one of three different types
of distinct attacks on the network, or a combination
of such attack scenarios. The first attack scenario
consists of a user that acquires host cache informa-
tion like a legitimate node might. The attacker con-
tacts these acquired nodes with a M, message,
getting the respective lists of their neighbors, and
building his candidate’s list, as a result. However,
once the attacker has this information it will then
attack the nodes appearing in this list more than
once, removing them from the network. Such an
attacker is limited in its capabilities and resources
when compared to the two other scenarios discussed
next, because the attacker attempts to target nodes
that might have a node degree higher than the aver-

100000 ; ; . .
10000 | * .
1000 | *
A
"
%,
100 F kY
3
%,
10 b %,
1 . . . .
1 10 100 1000 10000 100000

(b) Degree Distribution for 100,000 Nodes

Fig. 4. The degree distribution of a network of nodes running Phenix on a log-log scale.



R H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039 1029

age without participating in the overall structure.
However, such an attacker has a level of sophistica-
tion because it is not removing nodes randomly.
Rather, the attacker attempts to cause as much dis-
ruption as possible by maximizing the damage to
the network in creating targeted attacks toward
nodes that are important to the network perfor-
mance, with as little investment as possible. The
other two types of attacks are more organized from
the attacker’s perspective and require adding a large
number of nodes to the network. Such an attack
option is possible due to the fact that the network
is open and welcomes any connection with no prior
authentication or authorization. The first of these
two additional attacks we denote as a “Group Type
I” attack. This attack requires an attacker to add a
number of nodes to the network that only point to
each other, thus, increasing the probability that they
will emerge as preferred nodes in the overlay net-
work. The last type of attack, which we denote as
a “Group Type II” attack, consists of adding a
number of nodes to the network that would behave
like normal nodes do. These last two types of
attacks attempt to create anomalies in the network
by introducing “false” nodes that remain connected
for a prolonged period of time. Such a regime would
ensure that other “true” nodes come to rely on these
false malicious nodes due to the length of time that
the false nodes are available in the network. Under
such attack scenarios, these false nodes suddenly
disconnect from the overlay network all at the same
time with the intention of disconnecting and frag-
menting the network into small islands of nodes.
We also consider a hybrid attack scenario where
the strategy dictates that some of the malicious
nodes use the strategy of “Group Type I” and the
others use “Group Type II” attacks.

The following simulation results are for an over-
lay network composed of 2000 nodes. Each node
chooses a number of neighbors between 5 and 8§,
which represents small numbers of nodes, if com-
pared to Gnutella [15], denoted, respectively, by
min and max, with equal probability while main-
taining o;(¢) < 1,Vi, resulting in an average of
E(o;(29)) = 41/48 for the whole network. However,
this initial state for o will change as nodes join
and, most importantly, leave the network, as we
will discuss later. At each simulation time interval,
the number of nodes joining the network is based
on a normal distribution. For the case of nodes
leaving the network, we consider three different
cases: (i) the departure pattern is based on a nor-

mal distribution with a mean A where nodes leav-
ing are randomly selected from the overlay
network. This scenario is equivalent to the case
where the system faces no attacks, as shown in
Fig. 5; (ii) the departure pattern is based on a nor-
mal distribution, however, the nodes are removed
by sending ping messages creating a sorted list of
candidates, and removing preferred nodes from
the network (this corresponds to the ‘“modest
attacker”); and (iii) represents group attacks as in
the case of Group Type I, Group Type II, and
hybrid of Group Type I/Group Type II attacks.
In this case, a percentage of the nodes (note that
different values of this percentage are studied
extensively later in this section) represent malicious
nodes that conspire together to create the maxi-
mum possible damage to the whole structure of
the network. The attack proceeds by having nodes
at each interval leave the system as if there is no
attack scenario until the malicious nodes suddenly
drop out of the system, as described earlier. In
each case of nodes leaving the system, we compare
the performance of the network with a pure ran-
dom network having the same average number of
neighbors across all nodes, taking into consider-
ation the min, max values, and backward connec-
tivity from preferred nodes in a fashion similar to
a topology created in the Gnutella network [15].

In all simulations, we start with a small number
of nodes n;,;; = 20 that are interconnected randomly
to each other with each node maintaining a number
of neighbors min < #; < max. The average rate of
nodes arriving (i.e., issuing joins) is greater than
the average departure rate, allowing the network
to grow to the total number of nodes we would like
to examine. In the case of Type I, Type II or hybrid
group attacks, the process with which the network is
formed starts by adding 50% of the legitimate or
“true” nodes in incremental steps. At each step,
the number of nodes added is drawn from a normal
distribution, in a fashion similar to what would hap-
pen in a real P2P network. Following this, the mali-
cious nodes are introduced in a single step giving
them enough time to establish a strong presence in
the network. We then add the next 50% of the legit-
imate nodes also in incremental steps. During all the
steps, nodes continue to leave the network under a
“no attack” situation. Eventually, we remove the
malicious nodes, and study the effect on the remain-
ing live nodes.

The metric measured for these networks consists
of the percentage of unique reachable nodes in the



1030 R.H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039

100
2
2
5
<
[}
(]
()
o
207 Random
No Attack ----+----
Modest Attacker -
0 . . . . .
2 3 4 5 6 7
TTL
(a) Modest Attacker
100
BN
Z
5
<
o
I
[}
o
No attacks --—-+---
20 /4 Type | 10% -
Type | 20% ~*
Type | 50% ---&--
0 Type 1 90% ---=--
2 3 4 5 6 7

TTL
(c) Type I Attacks

100

Reachibility %

random
No attacks ---
Type Il 30% -
Type |1 30%
Hybrid: 20% type Il - 10% type | ---
Hybrid: 10% type Il - 20 type | ---

x % 4

20

o

O L
2 8 4 5 6 7 8
TTL
(b) Comparison of Group Attacks
100
80
2
> 60
3
£ y
S /
o 40}
i
random
No attacks -+
20t Type 1 10% x|
g Type 1 20% -~
Type Il 50% ---=--
Type 11 90% ---=---
0 . . . A )
2 3 4 5 6 7 8

TTL
(d) Type II Attacks

Fig. 5. Analysis of attacks on nodes running Phenix.

network versus the number of hops that we also
denote by TTL. This measurement will give us an
understanding of how many nodes can be reached
when an application issues a query on top of the
Phenix topology. Also note, that the same can be
denoted as a radius because it starts with a node
as the center and proceeds to try to cover as much
of the network as possible. The figures represent this
reachability metric in terms of the percentage of the
total number of “live” nodes in the network. We
compare the Phenix network under attack to a
purely random network (as implemented by the
Gnutella v0.6 [15]) because a random topology net-
work is often cited to be the most tolerable to
attacks [8]. Also, it is worth noting that the response
of the network to various attacks is shown before
the nodes run their node maintenance procedure
(as described in Section 3.3.2) because the perfor-
mance of a Phenix network will return back to the

case of “no attacks” after a single neighbors mainte-
nance is performed on each node.

Each experiment ran 10 times to ensure that the
results stem from the structure and properties of
the Phenix algorithm. We then sampled 10% of
the nodes and measured the reachability of each
of the sampled nodes and calculated the averages
for each result. All measurements deviated only a
little from the averages presented, proving that the
behavior of the distributed algorithm is indeed pre-
dictable and reliable.

Fig. 5a shows a comparison of the performance
for the first type of targeted attack discussed above,
which we denote on the plot as the “modest
attacker”, versus the “no attack” and random net-
work. We can see that in response to the targeted
node removals, the performance of the network
degrades but the loss is quite tolerable and still
offers a gain over the random topology. Thus, in



R H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039 1031

this scenario, Phenix has the potential of offering the
participating nodes a more efficient overall perfor-
mance where a node can be reached even with a
smaller TTL value.

Fig. 5b shows four different attacks: 30% of both
Group Type I and Group Type II attacks, and two
hybrid combinations each resulting in a total of 30%
malicious nodes in the overlay. In studying such a
comparison we were interested in seeing which strat-
egy might be more damaging in fragmenting the net-
work and disconnecting the live nodes. We observed
that Group Type I attacks create a larger fragments
in the network when introduced as a small percent-
age, than the same number of nodes running in the
Group Type II attack mode. In addition, when we
have a smaller percentage of Group Type I nodes
backed up by more nodes as Group Type II, the
performance of the network degrades the most as
the maximum number of nodes reachable drops,
as shown in Fig. 5b. This is due to the fact that
nodes in Group Type I attacks, point to each other,
which means that if we increase their number
beyond a certain threshold the probability that they
will be chosen by legitimate users as preferential
drops. However, Fig. 5b also shows us that across
all attack scenarios, the network does not collapse
into small islands. A promising result shows the
giant component, indicated by the maximum reach-
ability, not dropping below 70% of the remaining
“live” nodes under all attack conditions.

Fig. 5c and d show the effect of Group Type I
and Group Type II attacks on a Phenix network
where the percentage of malicious nodes shown is
actually the percentage from the final network. This
means that if we have 10% malicious nodes in a
2000-node network then the number of legitimate
nodes is 1800. This result implies that for an
attacker to launch a 50% attack, he/she has to have
the capability of introducing a number of malicious
equal to the number of existing nodes in the net-
work that he/she wishes to partition or harm.

In Figs. 5c and d, we can observe that a network
under an attack of 50% malicious nodes scenario
seems to provide a performance that is better than
the 20% malicious nodes attack. This result seems
counter-intuitive at first. However, it occurs because
the number of nodes in the network becomes half
the initial size, as the other half were malicious
nodes that dropped out of the network, while the
measured reachability is represented as a percentage
of the total number of live nodes. Similarly, a net-
work undergoing a 90% malicious node attack

seems to reach a constant plateau with a lower
TTL value than the initial network for the no
attacks scenario, as shown in the figure. This is
due to the fact that the structure of the network car-
ries the signature of a power-law like distribution,
offering a diameter in the order of O(logN) where
N is the total number of nodes participating in the
network. As N drops to 10% of its initial size, the
diameter follows by decreasing as well.

Measuring the giant component, which is the
largest portion of the network that remains strongly
connected, under different group attack scenarios is
shown in Fig. 7. If we consider, for example, the
20% attack for both Group Type I and Group Type
IT modes, we can observe that the giant component
still amounts to around 80% of the total nodes of
the network. At the same time, an 80% attack
results in a giant component composed of 60% of
the nodes. One can conclude that in order for a
malicious attacker to divide a network of 400 nodes
into half, then as many as 1600 nodes have to be
introduced into the network for a considerable
amount of time. This is a high price to pay to break
such a network in two parts as the attacker is adding
a number of nodes equal to 400% of the number of
nodes in the initial targeted network. Add to this
that the network recovers to a giant component in
the order of 90% of the total number of nodes after
performing one node maintenance interaction. This
result looks very promising in terms of Phenix’s
ability to respond to such attacks.

We ran the same set of simulations where the
total number of nodes is 20,000 instead of the
2000 keeping all other parameters identical. In
Fig. 6, we present a summary for the hybrid attack

100 T T T T T
80 | e
o\o 60
£
3 j‘/
S 40F
(9]
E /
ool/ 20000 Nodes: 10% type Il - 20% type | ]
4 20000 Nodes: 20% type Il - 10% type | ----+---
2000 Nodes: 10% type Il - 20% type | -
2000 Nodes: 20% type Il - 10% type | --x
0 \ A \ A \
2 3 4 5 6 7 8

TTL

Fig. 6. Hybrid attacks in 2000 and 20,000-node networks.



1032 R.H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039

100

80

60

40

20

Size of Giant Component (%)

Type | Attacks
Type Il Attacks -+

0 20 40 60 80 100
% Malicious Nodes

Fig. 7. Giant component.

discussed earlier. The behavior is very similar to
that of the previous set of experiments showing that
Phenix can provide a high degree of resiliency to the
network independent of the total number of nodes
in the network. Fig. 6 also shows another signature
of a power-law like distribution. A 20,000 node net-
work reaches almost a stable plateau with a TTL
larger by 1 hop than the 2000-node network, even
though the total number of nodes is 10 times
greater.

These plots indicate that increasing the TTL
beyond a certain limit does not provide any signifi-
cant benefit, as can be seen in Figs. 5b and 6. In fact,
the number of reachable nodes seems to reach a
maximum value beyond which increasing the TTL
does not offer a wider variety of nodes reached.
For example, it can be seen from Fig. 5c that
increasing the TTL from 4 to 5 in a 2000-node net-
work with 10% malicious nodes of Group Type I
will increase the reachability from 88.29% to
88.44%. This is a characteristic that can be exploited
by applications where a query carrying a large TTL
might have its hop decremented by more than 1 at a
node receiving it because the gain of a larger TTL is
not that significant. Such structure is beneficial in
the sense that a reply can be returned to the origi-
nating node in a faster period of time because the
number of hops is smaller than the random counter-
part. An application sitting on top of such a topol-
ogy might consider not to flood all of its neighbors
limiting the generated traffic. Rather, it can direct
the search using a smart policy such as GIA [9],
for example.

The o parameter introduced in Section 3.3.2 con-
tributes to a fast recovery because most nodes will

become quite aggressive in creating highly con-
nected nodes after losing their preferred neighbors.
This encourages the promotion of existing nodes
to become highly connected nodes and assume the
role of preferred nodes. We show the behavior of
o in Fig. 8. In this experiment, we use a hybrid
attack of 10% Group Type I and 20% Group Type
I1. We can observe in Fig. 8, that the initial value of
the average of « across the entire network is close to
0.7 before introducing malicious nodes. However,
when these nodes are added to the network (at
time = 60), they create a false sense of stability that
can be seen in an increase and almost constant o
despite the normal operation of the rest of the net-
work where nodes are joining and leaving. Follow-
ing the disappearance of the malicious nodes (at
time = 180), we observe a sudden drop in o across
the entire network, as a sudden change is experi-
enced by most legitimate live nodes. However, as
the network goes back to normal operations, o
starts to increase again, indicating that the network
is in a stable state again. The choice of the o update
influenced by Eq. (7) ensures aggressiveness in
decreasing it in order to respond as fast as possible
to an attack, while the process of increasing it again
is more conservative. We assumed any node can
handle any traffic offered to it in the work presented,
however, in practice this might not be the case and
some nodes might refuse to have a higher in-degree
than the average.

4.3. Sensitivity to bootstrapping mechanisms

In this section, we test the sensitivity of the Phe-
nix algorithm to the use of different bootstrapping

0.8
« WMMJ‘\‘]
5 06 e
: L
(o)}
o
© 04
<
0.2
0
0 50 100 150 200 250 300 350 400
Time
Fig. 8. a.



R H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039

mechanisms. We test mechanisms that are in use in
existing peer-to-peer systems, and we compare them
to the use of an ideal bootstrap server. We define an
ideal bootstrap server as one that is able to return a
list of nodes chosen randomly with equal probabil-
ities from all the nodes present in the system, when
contacted by a new node that needs to connect to
the network. Note that in this section, we are not
attempting to propose a scheme for a bootstrap ser-
ver as it is beyond the scope of our research, how-
ever we are testing the dependence of Phenix on
the different bootstrapping mechanisms.

We compare an ideal bootstrap server to a sys-
tem where nodes on their first connection to the net-
work obtain a list of existing nodes as in the case of
the ideal bootstrap mechanism, however, we incor-
porate the idea of caching where a node i saves
the addresses of its neighbors G;(¢) that it acquired
during a previous connection at time #,. Node i
favors connecting to the same set of neighbors at
a later time ¢,. This mechanism biases connections
to be made to nodes that stay connected to the net-
work for an extended period of time. By testing
against this caching mechanism, we want to ensure
that Phenix does not compromise its resilience in
such a situation. We implement Phenix with 4000
distinct nodes whose session lifetimes follow a distri-
bution similar to observations of empirical data as
reported by [28,29]. We measure the degree distribu-
tion of all nodes in the network, whenever the size of
the network exceeds 2000 nodes. The averaged
results over 10 runs are shown in Fig. 9a. We can
observe that the system still follows a power-law dis-
tribution preserving the desired characteristic of a
low-diameter.

1000

100 | .

10 -

1 10 100 1000

(a) Degree Distribution While Using Caching

1033

In order to measure the resilience of Phenix with
such a bootstrapping mechanism, we repeat the
experiment of Group Type I attacks, Group Type
IT attacks as well as hybrid attacks. The results are
shown in Fig. 10a. We can observe that such a boot-
strapping mechanism does affect the performance
but to a limited extent in the sense that the reach-
ability is lower than that for the case of an ideal ran-
dom bootstrap server. However, these aggressive
attacks did not succeed in dividing the network into
separated islands. The reasoning behind this is that
under the ideal random bootstrapping, nodes, who
emerged as preferred nodes were not necessarily
the “oldest” in the system, since no caching is imple-
mented. On the other hand, caching neighbors con-
nections on client nodes changes the system by
improving the chances of malicious nodes since they
are staying in the system for a prolonged period of
time and a returning node is more likely to connect
to one of them than to a legitimate node. This adds
to the effect of the simultaneous disappearance of
malicious nodes helping them create a noticeable
void in the overall presence of preferred nodes in
the network, thus increasing the diameter. In
addressing this void of preferred nodes, the remain-
ing nodes are able to recover to a power-law distri-
bution after one update of their list of neighbors,
promoting existing nodes into a preferred status.

Another mechanism of bootstrapping that we
test against is when the bootstrap server does not
know about all the nodes in the system, but instead
has knowledge about a smaller subset that it
chooses randomly from. The size of this subset is
represented as a percentage of the total number of
nodes that we denote by p. In such a scenario, the

1000

100 | 1

ES
10 | b 1

1000
(b) Degree Distribution With Partial Knowledge

Fig. 9. Degree distribution on a log-log scale.



1034 R.H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039

2
£
2
5
<
& 40t .
k:
20 b No attacks
Type Il - 30% -+
Type | - 30% ----x--
0 Hybrid: 20% Type Il - 10% Type | ~x
2 3 4 5 6 7

TTL
(a) Group Attacks While Caching

100

Reachibility in %

No attacks 1
Type Il - 30% -+
Type | - 30% -
Hybrid: 20% Type Il - 10% Type | -
2 3 4 5 6 7 8
TTL

(b) Group Attacks With Partial Knowledge

Fig. 10. Effects of attacks on reachability.

bootstrap server will still return a set of random
nodes when contacted by new-coming nodes, how-
ever, this set is biased towards nodes that it knows
about giving them a higher chance of being in con-
trol of which nodes become preferential. One might
imagine that a bootstrap server should be able to
know about a high percentage of nodes connected
to the network since these nodes contact the boot-
strap server before connecting to the network,
allowing the server to add them to its list. However,
this is often not the case due to the fact that nodes
might use their cache from a previous session, as
presented above, while they have a different IP
DHCP-obtained; this will make the bootstrap server
oblivious to their presence in the network. Another
reason why a bootstrap server cannot obtain full
knowledge is due to the use of distributed boot-
strapping infrastructure on several servers, which
typically do not exchange information among each
other for scalability reasons; thus resulting in each
bootstrap server having a partial view of the
network.

We test Phenix using a network of 2000 nodes
that operate with five distinct bootstrap servers.
We assume that the initial subset of 20 nodes
appearing in the network is known to all five of
the bootstrap servers. However, any subsequent
arriving node will pick a bootstrap server randomly
with equal probabilities, and queries it for random
nodes. At that instance, that specific server will
add this new node to its list of known nodes. We
observe that the degree distribution of this network
is still power-law-like as seen in Fig. 9b. We test the
reachability of Phenix using such a mechanism

under normal operation as well as under attacks
for the same setup of 2000 nodes and five mutually
independent bootstrap servers. The results are
shown in Fig. 10b. Testing this algorithm against
malicious attacks of Group Type I, Group Type
II, and Hybrid shows that the network remains
resilient under the first two cases of attacks, but
seems to lose more under the Hybrid attack. Note
that under the Hybrid attack the network does not
get disconnected but instead its typical diameter
increases deviating from a power-law behavior.
The reason behind this is that with partial knowl-
edge of nodes, malicious nodes constitute a set of
preferred nodes and another set of nodes pointing
to them. Thus, if we picture the network where
the preferred nodes are in the center, the ones point-
ing directly to them constitute a circle around them.
The Hybrid attack strategy puts malicious nodes in
the center as well as a set of nodes around them.
Thus, the topology becomes similar to a star topol-
ogy. As the nodes in the center of the star and a big
portion in the first layer disappear, as they are mali-
cious, the network does not have sufficient connec-
tions to sustain the power-law distribution;
consequently the diameter increases. Note that in
our experiments, it took the nodes two rounds of
the update mechanism to acquire a power-law dis-
tribution back, instead of the regular one round of
updates that is sufficient under previous mecha-
nisms and attacks scenarios.

Under such conditions, it seems necessary for the
nodes to discover other nodes more aggressively
instead of relying on the initial set. In order to alle-
viate from this issue, we modify the Phenix algo-



R H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039 1035

Reachibility in %

20 No attacks
Type Il - 30% -+
Type | - 30% -x-

Hybrid: 20% Type Il - 10% Type | -—x

2 3 4 5 6 7 8

TTL
(a) Group Attacks With Additional Discovery

100

Reachibility in %

201 No attacks 1
Type Il - 30% ----=+----
Type | - 30% -x--

Hybrid: 20% Type Il - 10% Type | ~—x

2 3 4 5 6 7 8
TTL

(b) Group Attacks With Using 2 Bootstrap Servers

Fig. 11. Effects of attacks on reachability with additions to Phenix.

rithm by adding another mechanism that we call the
discovery stage, which takes place during the initial
connections stage. In the discovery stage, a node
starts by connecting to one of the random nodes
in Ghoesty;, and sends a special ping message with
TTL = x, where x > 1 and chosen randomly. Each
node j receiving this special message will decrease
the TTL by 1 and forward the message to only
one of its neighbors also chosen randomly, as long
as TTL > 1. If TTL =1, then the receiving node
J. will send back a list of its neighbors (or a subset,
if it is a preferred node) to the sender node i. This
procedure introduces a more diverse sample that a
node can use as a startup point to collect its final list
of neighbors, while maintaining restricted crawling
capabilities that a malicious node can abuse. In fact,
this newly obtained list of neighbors from node j,
will be used by node i as G; defined in Eq. (2). Note
that no matter how deep a node sends a ping mes-
sage, it will stay in the “circle” of malicious nodes
if it had already started with one of them forcing
it to connect to the circle as its sole outbound con-
nection to the rest of the network. However, the
probability that a node will have all of its initial
set of nodes belonging to the set of malicious nodes
is quite low. Another mechanism to overcome such
situations requires a new node to contact more than
one bootstrap server adding to the diversity of its
initial set. The results of simulating both of these
mechanisms are presented in Fig. 11a and b. In
the first technique, nodes send the initial discovery
message with x chosen from the set [2,3,4,5] with
equal probability. In the second technique, nodes
contact two bootstrap servers chosen randomly

from the set with equal probabilities. We can
observe that the problem shown in Fig. 9b is not
replicated under these modifications.

5. Experimental testbed results

We implemented Phenix in a real Internet-wide
overlay environment running on the PlanetLab
experimental testbed [24] for the purpose of measur-
ing the overhead of the algorithm in the face of
aggressive node removal scenarios. The code is built
on the Open Source Jtella software system [17], a
Java API for implementing the Gnutella protocol.
We present our results from an implementation
and experiment that ran on 81 PlanetLab nodes.
We also measured the time needed for the network
to recover from an attack targeted at highly con-
nected nodes in the Phenix overlay running on
PlanetLab.

5.1. Implementation

Each node in our implementation has two layers.
The first layer being the Phenix algorithm composed
of a servent (server and client) daemon responsible
for incoming as well as outgoing connections. The
node opens a socket connection waiting for incom-
ing connections from other nodes either sending an
M, (as described in Eq. (2)), or nodes wishing to add
this node to their neighbors’ list. In terms of the
graph, this connection receives and services all the
incoming edges pointing to this node. The second
type of connection constitutes all the connections
that a node opens to other nodes, or the outgoing



1036 R.H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039

connections. As for the second layer, it is purely for
experimental purposes, and opens a listening socket
interacting with a central control server. The pur-
pose of this latter layer is to be able to monitor
the connections of a node in order to observe the
progress of the network formation as well as the
emerging topology. In addition, the control server
can send a stop signal to this layer asking it to
remove the node from the overlay network; thus,
emulating targeted node removal. The implementa-
tion is performed by modifying the JTella API
which is a Java module based on Gnutella v0.6
[15]. The modifications are mainly in acquiring
hosts and creating outgoing connections, making
it conform to the Phenix algorithm, presented in
Section 3, instead of the random Gnutella topology.

5.2. Degree distributions experiments

The Phenix overlay ran on the 81 PlanetLab
nodes spread over 43 sites across eight countries
(Australia, Canada, Germany, Hong Kong, Swe-
den, Taiwan, UK, and US). The network started
with ny,; = 10 nodes interconnected randomly, in
order to boot up the process of network formation.
After that, nodes started joining at the rate of two
nodes every 5s by contacting the control server,
which acts as a bootstrap server and provides the
rendezvous mechanism by giving each node a list
of four nodes that it can connect to. The generated
list of nodes, given as a response for each request, is
drawn randomly from nodes that have already
joined the system with no bias given towards node
location or proximity.

Thus, each starting node contacted the control
server to get the initial Gy, list, and applied the
Phenix algorithm in making its decisions. In the fol-
lowing experiment, we chose the values of 3 and 4
for min and max (lower and upper bounds on the
number of initial neighbors for a node, respec-
tively), since the number of nodes (81 nodes) is a
small number as compared to the growth of peer-
to-peer systems in today’s networks. Choosing
higher values for min and max would create a net-
work that is closer to a mesh while lower values
can casily result in situations where a node might
find itself completely disconnected from the rest of
the network with the removal of few nodes. Follow-
ing the complete formation of the network and con-
nections of all nodes, we took a snapshot of the
resulting graph by examining the nodes’ neighbors’
list. Fig. 12 presents the out-degree distribution (or

50 r - T
Il Initial Network|
451 [JFinal Network|

40}

351
30
251
20}

Node Distribution

15|
10}
5

0 A " A B n I A

0 5 10 15 20
Number of Neighbors

Fig. 12. Out-degree (number of neighbors) distribution.

number of formed outgoing connections) for the
entire Phenix overlay network. The purpose behind
this metric is to examine the number of nodes that
emerged as preferential nodes and their respective
degrees, as they acquired backward connections,
thus, becoming hubs in the overlay network. We
can see from the figure that the majority of nodes
have between 3 and 4 neighbors, with the exception
of three nodes with 5, 10, and 18 connections
respectively. Before sending these three nodes the
command to close their incoming and outgoing con-
nections, we measured the rtt (round trip time) from
the control server to every node in the network in
order to see the diversity of the connections.
Fig. 13 shows the distribution of rtt for the overlay
nodes. We can observe that although the majority of
the nodes are within less than 100 msec reach from
the control server, some offered a diversity in the

30

25}

201

Node Distribution

WElr 1

0 50 100 150 200 250 300 350 400
rtt from Control Server (msec)

Fig. 13. Round trip time (rtt) distribution of nodes in the testbed.



R H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039 1037

network where their rtt reached higher values up to
350 msec, thus, offering a degree of heterogeneity
for the experiment.

In this experiment we sent the three highly con-
nected nodes (with 5, 10, and 18 connections) a stop
signal through their control layer forcing them to
close all of their connections. We then waited for
the reaction of the rest of the nodes in the Phenix
overlay, and measured how long it took them to
rearrange their connections and send their new state
to the control server. Several factors enter into play
when obtaining these results as presented by ¢;:
tp =r1tt;/2 4+ {; + rtt; + n; + rtt;/2. The total time
needed for a node i to inform the control server that
it performed the node maintenance, denoted by ¢;, is
the summation of five terms presented above. The
first term is the time needed for the stop message
to travel from the control server to the node to stop
J, denoted by rtt;/2. The second term is the time
needed for the node i, in the case it is connected
to node j, to realize that node j is no longer available
(or the timeout of the connection, in this case we
chose the value to be 1000 msec), denoted by (;.
The third term rtt; is the time needed for node i to
contact the control server requesting the address
of one or more nodes that it can connect to, denoted
by rtt;. The fourth term, denoted by #;, is the time
needed to run the Phenix algorithm, which might
involve contacting a friend node in the case of
acquiring a preferential node. Finally, the fifth term
rtt;/2 is the time required to send the node mainte-
nance outcome for the control server informing it of
the change in the neighbors list. The distribution of
time for each of the affected nodes to run this node
maintenance mechanism is shown in Fig. 14. We

20 . . . .
15 (] ] ]

c

S

5 .

2

2 10t .

o

(0]

el

o

P4
5. 4
0 . HHH I 0.0 .0

0 500 1000 1500 2000

Time Needed to Acquire New Neighbors (msec)

Fig. 14. Node maintenance duration.

can observe that most nodes returned to a stable
state by creating new connections in less than 1 s.
Finally, Fig. 12 shows a comparison of the resulting
connectivity with the initial overlay graph, where we
observe that four new highly connected nodes
emerged ensuring the fast recovery of the Phenix
overlay with a low-diameter topology.

6. Conclusion

We have presented a fully distributed algorithm
called Phenix that creates low-diameter resilient
peer-to-peer overlay networks. To the best of our
knowledge Phenix represents one of the first contri-
butions that simultaneously supports high perfor-
mance in terms of low-diameter and fast response
times, and is robust to attacks and resilient to vari-
ous overlay dynamics and node failure scenarios. In
this paper, we have shown through analysis, simula-
tion, and from results from an experimental imple-
mentation on the PlanetLab overlay that Phenix
results in efficient connectivity, offering tolerance
to various network dynamics including join/leaves
and a wide-variety of simple and more sophisticated
node attacks. Because of the rise in number of secu-
rity attacks and the growing creativity of attackers,
the need for resilient overlays that can offer both
performance and resilient properties will become
necessary particularly for commercial reliable over-
lays. Phenix supports low-diameter performance
and resilience without sacrificing flexibility.

References

[1] L.A. Adamic, The small world web, in: Proceedings of the
third European Conference on Digital Libraries, Lecture
notes in Computer Science, vol. 1696, Springer, 1999, pp.
443-452.

[2] L.A. Adamic, R.M. Lukose, B.A. Huberman, Local search
in unstructured networks, in: S. Bornholdt, H.G. Schuster
(Eds.), Review Chapter to Appear in Handbook of Graphs
and Networks: From the Genome to the Internet, Wiley
VCH, Berlin, 2003.

[3] D. Adkins, K. Lakshminoarayanan, A. Perrig, 1. Stoica,
Towards a more functional and secure network infrastruc-
ture, UCB Technical Report No. UCB/CSD-03-1242.

[4] L. ANN. Amaral, A. Scala, M. Barthelemy, M. Stanley,
Classes of small-world networks, in: Proceedings of the
National Academy of Sciences, vol. 97(21), October 2000.

[5] D.G. Andersen, Mayday: distributed filtering for Internet
services, in: Proceedings of the Fourth Usenix Symposium
on Internet Technologies and Systems, Seattle, WA, 2003.

[6] D. Andersen, H. Balakrishnan, F. Kaashoek, R. Morris,
Resilient overlay networks, in: Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP), 2001.



1038 R.H. Wouhaybi, A.T. Campbell| Computer Networks 52 (2008) 1019-1039

[7]1 A-L Barabasi, R. Albert, Emergence of scaling in random
networks, Science 286 (1999) 509.

[8] A-L Barabasi, R. Albert, Statistical Mechanics of Complex
Networks, Center for Self-Organizing Networks, University
of Notre Dame, Notre Dame, Indiana.

[91Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S.
Shenker, Making Gnutella-like P2P systems scalable, in:
Proceedings of the 2003 conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Com-
munications (ACM Sigcomm 2003), 2003, pp. 407-418.

[10] C. Cooper, M. Dyer, C. Greenhill, Sampling regular graphs
and a peer-to-peer network, Combin., Prob. Comput. 16
(2007) 557-593.

[11] S. El-Ansary, L.O. Alima, P. Brand, S. Haridi, Efficient
broadcast in structured P2P networks, in: Proceedings of the
Second International Workshop on peer-to-peer Systems
(IPTPS’03), Berkeley, CA, February 2003.

[12] M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-law
relationships of the Internet topology, in: Proceedings of the
1999 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (ACM
Sigcomm 1999), 1999, pp. 251-262.

[13] T. Feder, A. Guetz, M. Mihail, A. Saberi, A Local Switch
Markov Chain on Given Degree Graphs with Application in
Connectivity of Peer-to-Peer Networks, Foundations of
Computer Science (FOCS 2006), Berkeley, CA, October
2006.

[14] Gnucleus. The Gnutella Web Caching System. http://gnu-
cleus.sourceforge.net/.

[15] The Gnutella RFC. http://rfc-gnutella.sourceforge.net/.

[16] M. Jovanovic, Modeling large-scale peer-to-peer networks
and a case study of Gnutella, Master’s thesis, University of
Cincinnati, 2001.

[17] JTella. http://jtella.sourceforge.net/.

[18] A.D. Keromytis, V. Misra, D. Rubenstein, SOS: secure overlay
services, in: Proceedings of the 2002 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Com-
munications (ACM Sigcomm 2002), 2002, pp. 61-72.

[19] B.J. Kim, C.N. Yoon, S.K. Han, H. Jeong, Path finding
strategies in scale-free networks, Phys. Rev. E 65 (2002)
027103.

[20] P.L. Krapivsky, G.J. Rodgers, S. Redner, Degree distribu-
tions of growing random networks, Phys. Rev. Lett. 86
(2001) 5401.

[21] Merriam-Webster  online.  http://www.m-w.com/cgi-bin/
dictionary?book=Dictionary&va=resilience.

[22] G. Pandurangan, P. Raghavan, E. Upfal, Building low-
diameter P2P networks, IEEE J. Selected Areas Commun. 21
(2003) 995-1002.

[23] G. Pandurangan, P. Raghavan, E. Upfal, Building P2P networks
with good topological properties, Technical Report, 2001.

[24] PlanetLab. http://www.planet-lab.org/.

[25] Query Routing for the Gnutella Network, Version 1.0, http:
//www.limewire.com/developer/query_routing/keyword%
20routing. htm.

[26] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker,
A scalable content-addressable network, in: Proceedings of
the 2001 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications
(ACM Sigcomm 2001), 2001, pp. 161-172.

[271J. Ritter, “Why gnutella can’t scale. no, really,” http://
www.darkridge.com/jpr5/doc/gnutella.html, 2001.

[28] S. Saroiu, P.K. Gummadi, S.D. Gribble, A measurement
study of peer-to-peer file sharing systems, in: Proceedings of
Multimedia Computing and Networking (MMCN) 2002,
San Jose, CA, USA, January 2002.

[29] S. Sen, J. Wang, Analyzing peer-to-peer traffic across large
networks, in: Proceedings of the Second ACM SIGCOMM
Workshop on Internet Measurement Workshop, Marseille,
France, 2002, pp. 137-150.

[30] Sharman Networks LTD. KaZaA Media Desktop. http://
www.kazaa.com/.

[31]I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H.
Balakrishnan, Chord: a scalable peer-to-peer lookup service
for internet applications, in: Proceedings of the 2001
Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (ACM Sig-
comm 2001), 2001, pp. 149-160.

[32] Ultrapeers: Another Step Towards Gnutella Scalabi-
lity. http://groups.yahoo.com/group/the_gdf/files/Proposals/
Ultrapeer/Ultrapeers_1.0.htm.

[33] D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-
world’ networks, Nature 393 (1998) 440-442.

[34] R.H. Wouhaybi, A.T. Campbell, Phenix: supporting resilient
low-diameter peer-to-peer topologies, in: Proceedings of
IEEE INFOCOM’2004, Hong Kong, China, March 7-11,
2004.

[35] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph,
J. Kubiatowicz, Tapestry: a resilient global-scale overlay for
service deployment, IEEE J. Selected Areas Commun. 22
(2004) 41-53.

Rita H. Wouhaybi is a research scientist
at Intel Corporation. She has obtained
her Ph.D. from the Electrical Engineer-
ing Department of Columbia University.
Her research interests include peer-to-
peer networks, and game theory. She has
also received her Master and Bachelor
degrees in Computer and Communica-
tions Engineering in 1996 and 1994,
respectively, from the American Uni-
versity of Beirut.

Andrew T. Campbell recently joined
Dartmouth College as an Associate
Professor in Computer Science and is a
member of the Center for Mobile Com-
puting (CMC) and the Institute for
Security Technology Studies (ISTS).
Prior to joining Dartmouth Andrew was
an Associate Professor of Electrical
Engineering at Columbia University
(1996-2005) and a member of the
COMET Group. His current research
interests include the development of resilient sensor networks,
intrusion detection systems for WiFi networks, and open spec-
trum wireless networks.

& A


http://gnucleus.sourceforge.net/
http://gnucleus.sourceforge.net/
http://rfc-gnutella.sourceforge.net/
http://jtella.sourceforge.net/
http://www.m-w.com/cgi-bin/dictionary?book=Dictionary&amp;va=resilience
http://www.m-w.com/cgi-bin/dictionary?book=Dictionary&amp;va=resilience
http://www.planet-lab.org/
http://www.limewire.com/developer/query_routing/keyword%20routing.htm
http://www.limewire.com/developer/query_routing/keyword%20routing.htm
http://www.limewire.com/developer/query_routing/keyword%20routing.htm
http://www.darkridge.com/jpr5/doc/gnutella.html
http://www.darkridge.com/jpr5/doc/gnutella.html
http://www.kazaa.com/
http://www.kazaa.com/
http://groups.yahoo.com/group/the_gdf/files/Proposals/Ultrapeer/Ultrapeers_1.0.htm
http://groups.yahoo.com/group/the_gdf/files/Proposals/Ultrapeer/Ultrapeers_1.0.htm

R H. Wouhaybi, A.T. Campbell] Computer Networks 52 (2008) 1019-1039 1039

He received his Ph.D. in Computer Science (1996) from
Lancaster University, England, and the NSF Career Award
(1999) for his research in programmable wireless networking.
Prior to joining academia he spent 10 years working in
industry both in Europe and the USA in product research

and development of computer networks and wireless packet
networks. He spent his sabbatical year (2003-2004) at the
Computer Lab, Cambridge University, as an EPSRC Visiting
Fellow. In 2005 he and his family relocated from Manhattan
to Norwich, Vermont.



	Building resilient low-diameter peer-to-peer topologies
	Introduction
	Related work
	Phenix peer-to-peer networks
	Power-law properties
	Phenix algorithm design
	Network resiliency
	Hiding node identities
	Node maintenance mechanism

	Preferential nodes

	Simulation
	Power-law analysis
	Attack analysis
	Sensitivity to bootstrapping mechanisms

	Experimental testbed results
	Implementation
	Degree distributions experiments

	Conclusion
	References


