
MetroTrack: Predictive Tracking of Mobile

Events using Mobile Phones

Gahng-Seop Ahn1, Mirco Musolesi2, Hong Lu3,
Reza Olfati-Saber3, and Andrew T. Campbell3

1 The City University of New York, USA, gahn@ccny.cuny.edu
2 University of St. Andrews, United Kingdom

3 Dartmouth College, Hanover, NH, USA

Abstract. We propose to use mobile phones carried by people in their
everyday lives as mobile sensors to track mobile events. We argue that
sensor-enabled mobile phones are best suited to deliver sensing services
(e.g., tracking in urban areas) than more traditional solutions, such as
static sensor networks, which are limited in scale, performance, and cost.
There are a number of challenges in developing a mobile event tracking
system using mobile phones. First, mobile sensors need to be tasked be-
fore sensing can begin, and only those mobile sensors near the target
event should be tasked for the system to scale effectively. Second, there
is no guarantee of a sufficient density of mobile sensors around any given
event of interest because the mobility of people is uncontrolled. This re-
sults in time-varying sensor coverage and disruptive tracking of events,
i.e., targets will be lost and must be efficiently recovered. To address
these challenges, we propose MetroTrack, a mobile-event tracking system
based on off-the-shelf mobile phones. MetroTrack is capable of tracking
mobile targets through collaboration among local sensing devices that
track and predict the future location of a target using a distributed
Kalman-Consensus filtering algorithm. We present a proof-of-concept
implementation of MetroTrack using Nokia N80 and N95 phones. Large
scale simulation results indicate that MetroTrack prolongs the tracking
duration in the presence of varying mobile sensor density.

1 Introduction

Urban sensing and tracking [1, 5] is an emerging area of interest that presents a
new set of challenges for traditional applications such as tracking noise, pollu-
tants, objects (e.g., based on radio signatures using RFID tags), people, cars, or
as recently discussed in the literature and popular press, weapons of mass de-
struction [16]. Traditional tracking solutions [4, 7] are based on the deployment of
static sensor networks. Building sensor networks for urban environments requires
careful planning and deployment of possibly a very large number of sensors capa-
ble of offering sufficient coverage density for event detection and tracking. Unless
the network provides complete coverage, it must be determined in advance where
the network should be deployed. However, it is challenging to determine where

2

the network should be deployed because events are unpredictable in time and
space. We believe the use of static networks across urban areas has significant
cost, scaling, coverage, and performance issues that will limit their deployment.

An alternative design of such a sensor system, which we propose in this
paper, is to use people’s mobile phones as mobile sensors to track mobile events.
Increasingly, mobile phones are becoming more computation capable and embed
sensors and communication support. Therefore, making a sensor network based
on mobile phones is becoming more of a reality. For example, many high-end
mobile phones, such as Nokia N95 phones, include a number of different radio
technologies (e.g., multiple cellular radios, WiFi, and Bluetooth), and sensors
(e.g., accelerometer, microphone, camera, and GPS) that are programmable. We
imagine that micro-electro-mechanical systems (MEMS) technology will allow
for the integration of more specialized sensors (e.g., pollution/air quality sensor,
bio sensor, and chemical sensor) in the future. In our design, we assume that we
can exploit the mobile phones belonging to people going about their daily lives
or defined groups (e.g., federal employees, transit workers, police). Ultimately,
the more people who opt in to being a part of the sensor network, the better
the density and sensing coverage will be and the more effective urban sensing
system will become in delivering services.

There are several important challenges in building a mobile event tracking
system using mobile sensors. First, mobile sensors must be tasked before sens-
ing [4]. Another issue that complicates the design of the system is that the
mobility of mobile phones (therefore, the mobile sensors) is uncontrolled. This
work diverges from mobile sensing systems that use the controlled mobility of a
device (e.g., a robot) as part of the overall sensor system design. In such cases,
the system can be optimized to drive the mobility of the sensors in response
to detected events [11]. Due to the uncontrolled mobility of the mobile sensors,
there is no guarantee that there will always be high enough density of mobile
sensors around any given event of interest. The density changes over time so
that sometimes there is a sufficient number of devices around the event to be
tracked, and at other times, there is limited device density. One can think of
this as dynamic sensor network coverage. The event tracking process has to be
designed assuming that the process of tracking will be disrupted periodically
in response to dynamic density and coverage conditions. Thus, a fundamental
problem is how to recover a target when the system loses track of the target due
to changing coverage.

In this paper, we propose MetroTrack, a system capable of tracking mobile
events using off-the-shelf mobile phones. MetroTrack is predicated on the fact
that a target will be lost during the tracking process, and thus it takes compen-
satory action to recover the target, allowing the tracking process to continue.
In this sense, MetroTrack is designed to be responsive to the changing density
of mobile phones and the changing sensor network coverage. The MetroTrack
system is capable of tasking mobile sensors around a target event of interest and
recovering lost targets by tasking other mobile sensors in close proximity of the
lost target based on a prediction of its future location.

3

MetroTrack is based on two algorithms, namely information-driven tasking
and prediction-based recovery. The tasking is information-driven because each
sensor node independently determines whether to forward the tracking task to
its neighbors or not, according to its local sensor state information. If the sen-
sor readings meet the criteria of the event being tracked, then the sensor node
forwards the task to its neighbors, informing them it detected the event.

The recovery is based on a prediction algorithm that estimates the lost target
and its margin of error. MetroTrack uses a geocast approach similar to the
algorithms in [12, 8] to forward the task to the sensors in the projected area of the
target. In our prior work, Olfati-Saber [15] presented the Distributed Kalman-
Consensus filter (DKF) that defined the theoretical foundation of distributed
tracking of mobile events. In this paper, we extend this work and importantly
implement it in an experimental mobile sensing network. We adapt the DKF for
the prediction of the projected area of the target.

MetroTrack does not have to rely on a central entity (i.e., a tracking leader)
because MetroTrack tracks events based on local state and interactions between
mobile phones in the vicinity of a target. Therefore, MetroTrack is simple, flex-
ible, robust, and easy to deploy. However, we do not rule out the potential help
from infrastructure. Also, mobile phones occasionally interact with the back-end
servers using cellular or infrastructure-based Wi-Fi connectivity for initial task-
ing purposes or to inform the back-end of the targets progress. In this paper, we
focus on the interaction between mobiles and reserve the issues of the interaction
with the back-end servers as future work.

Also, we do not discuss what would provide the incentive for more people to
opt in (even if we believe mechanisms devised for peer-to-peer systems can be
exploited [13, 17]), nor do we discuss the important privacy, trust, and security
issues that predicate the wide-scale adoption of these ideas. Rather, we leave
those issues for future work and focus on the proof of concept and evaluation of
a system that is capable of tracking mobile events using mobile phones. To the
best of our knowledge, this is the first sensor-based tracking system of mobile
events using mobile phones.

The paper is organized as follows. Section 2 describes the information-driven
tasking and the prediction-based recovery of MetroTrack. In Section 3, we present
the mathematical formulation of the prediction algorithm that is the basis for the
prediction-based recovery. In Section 4, we discuss the implementation and the
performance evaluation of MetroTrack. A proof-of-concept prototype of Metro-
Track is implemented using Nokia N80 and N95 phones to show that MetroTrack
can effectively track a mobile noise source in an outdoor urban environment.
Following this, in Section 5, we address the large-scale design space of Metro-
Track which cannot be analyzed from a small-scale testbed deployment. Section
6 presents some concluding remarks.

4

2 MetroTrack Design

2.1 Information-driven Tasking

The tracking initiation can be done in two ways, i.e., user initiation or sentry
sensor [4] initiation. A user can request to track an event described by certain
attributes when the target event is encountered. Another way is to rely on sentry
nodes to detect the event to be tracked. The sentry nodes can be selected from
mobile nodes that have enough power to periodically turn on their sensors and
start sampling. When one of the sentry nodes detects an event that matches
the pre-defined event description, the node initiates the tracking procedure. The
device associated with the requesting user or first sentry node that has detected
the event becomes an initiator.

The tasking is a distributed process. Each neighboring sensor node that re-
ceives the task message performs sensing. The sensor node does not forward the
task message to its neighbors unless it detects the event. The task message is
forwarded by the sensors that are tasked and have detected the event. Hence,
the nodes in close proximity to the event are tasked and the size of the tasked
region is one hop wider than the event sensing range. As a result, the sensors just
outside the event sensing range are already tasked and ready to detect the event
wherever it moves. Each sensor node locally determines whether it has detected
the event by comparing the sensor reading and the description of the event in
the task message. As discussed earlier, the description of the event includes the
modality of the sensors that can detect the event and the methodology by which
the event can be detected (such as a threshold value). If the modality of the
sensor node matches one of the modalities specified in the task message (i.e.,
the device is able to sense the event), then the sensor node starts the sampling
process.

The responsibilities of the sensor that detects the event are as follows. The
sensor should keep sensing the event using a high sampling rate and report the
data to the back-end servers. In addition, the sensor should periodically forward
the task message to its neighboring sensor nodes. The sensors that are tasked
with one of the task messages containing the same event identifier form a tracking
group. We note that this algorithm is not based on the election of a leader.
Maintaining a leader for a group requires overhead. In addition, the failure of
the leader affects the overall operation of the tracking system. MetroTrack can
maintain the group and task the sensors to track the target without the need of
a leader.

2.2 Prediction-based Recovery

This section describes the prediction-based recovery. First, the recovery initia-
tion is as follows. The task of tracking the event is distributed among multiple
mobile sensors. If a sensor is not detecting the event, this is not considered suf-
ficient to infer that the target is completely lost since other sensors may still
be sensing the event. In MetroTrack, a mobile sensor listens to other mobile

5

sensors to minimize the false positives of such decisions. A sensor that has de-
tected the event previously but currently is not detecting the event listens to the
task messages forwarded from its neighboring nodes. If none of the neighboring
nodes is forwarding the task message, the device infers that the target is lost.
Assuming that the speed of the target is comparable to that of a tracking node
and the sampling rate of sensors is high enough to detect the event, the over-
hearing will prevent false positives. However, there might still be false positives
if the density of sensors is not sufficient. If a sensor makes a wrong decision,
each node will forward an unnecessary number of task requests. However, the
penalty is bounded by limiting the duration of the recovery process. In addition,
MetroTrack performs suppression to explicitly stop the sensors from forwarding
unnecessary messages. When one of the sensors declares that the target is lost, as
described above, then the sensor initiates the recovery process by broadcasting
a recovery message.

The recovery process is based on the estimation of the location of the lost
target and the error margin associated to the prediction. The recovery message
contains the information about the lost target. MetroTrack adopts a geocast
scheme similar to the algorithms in [12, 8] to forward the recovery message to the
sensors in the projected area in which the target will likely move. The sensors
that receive the recovery message attempt to detect the target. If one of the
sensors receiving the recovery message detects the target, then the recovery
process is complete. The sensor that recovered the target broadcasts a task
message, which resumes the information-driven tasking part of the protocol. All
the hosts in the recovery area are in the recovery state. We considered a projected
circular area. The center of the projected area is the predicted target location
and the radius is the error margin of the prediction. The calculation of this area
is based on the Kalman filter forecasting techniques, as described in Section 3.
MetroTrack calculates the radius R of the recovery area as:

R = Rp + Rs + Rc (1)

where Rp corresponds to the error margin associated to the prediction (see Equa-
tion 8 in Section 3). Our goal is to task all the sensors that are likely to be in
contact with the target inside the projected region so we add the sensing range
(Rs) to this radius. Finally, we also add the communication range of the devices
(Rc) in order to be able to have the nodes that are at a one-hop distance from
those at the border of the area with radius Rp+Rs in recovery state. These
nodes are likely to enter the area and are particularly useful in spreading the
recovery messages in the case of sparse network topologies. We note that the
disk-shaped model is an approximated conceptual model that, in a real deploy-
ment, is influenced by the GPS errors for localization and by non uniform radio
propagation and interferences. A node that has received the recovery message
stays in recovery state until the node moves outside the recovery area or the re-
covery process timer expires. A timeout is specified to limit the duration of the
recovery process. If the target is not recovered after the expiration of the timer,
MetroTrack stops tracking the target. The nodes in recovery state periodically

6

broadcast the recovery message to their instant (one-hop) neighbors so that new
nodes that move into the recovery area can receive the recovery message.

It may happen that some sensors can be still in the recovery state while
other sensors have already recovered the target and started to track it. It may
also happen that the target event disappears (e.g., a sound source that is sud-
denly silent). MetroTrack addresses this problem using two mechanisms. First,
it limits the duration of the recovery process and the spatial dissemination of
the recovery messages. Second, MetroTrack performs a suppression process to
reduce unnecessary overhead. Every node that recovers the target or receives a
task message broadcasts a suppression message that is disseminated among the
devices in the recovery area. Every node that receives the suppression message
inside the recovery area re-broadcasts the message, or, if the node is in recovery
state, it stops the recovery process and stops broadcasting the recovery message.

3 Prediction Algorithm

3.1 Prediction Model

In this section, we provide an overview of the prediction model in order to fully
understand the collaborative prediction protocol used for the recovery process.
We define a generic model for predicting the movement of a target in geograph-
ical space based on the Constant Velocity model [3], which is widely used in
mobile tracking. Despite of the term ‘constant velocity’, the Constant Velocity
model represents a moving target with dynamically changing velocity with cer-
tain variance. We consider a moving target with position q ∈ "2 and a velocity
p ∈ "2. The one-step predictor is defined as follows:

x̂(k + 1) = Ax̄(k) + Bw(k) (2)

where x(k) = [q1(k), p1(k), q2(k), p2(k)] denotes the state of the target at time
k. x̄(k) indicates the prior state estimate at step k given the knowledge of the
movement under observation, whereas x̂ indicates the state estimate of the same
process at time k +1. q1 and p1 are the position and the speed on the x-axis and
q2 and p2 are the position and speed on the y-axis, respectively. w(k) is a zero-
mean Gaussian noise denoted by N(0, 1). The prior estimate is the information
stored in the phones and periodically exchanged among the phones that are in
reach. The matrix A and B are defined as follows:

A =

1 ε 0 0
0 1 0 0
0 0 1 ε
0 0 0 1

, B = I2 ⊗ G, with G =

(

ε2σ0/2
εσ0

)

where ε is the interval of steps and ⊗ denotes the Kronecker product of matrices.
The prediction for the instant k + 2 is defined as follows:

x̂(k + 2) = A2x̄(k) + ABw(k) + Bw(k + 1) (3)

7

The generic prediction for the instant k + m is defined as:

x̂(k + m) = Amx̄(k) +
m−1
∑

j=0

AjBw(k + m − 1 − j) (4)

The meaning of the symbols x̂ and x̄ is the same of the k+1 case. This equation
can be rewritten as:

x̂(k + m) = Amx̄(k) + v(k) (5)

where v(k) is the noise associated to the k + m prediction defined as:

v(k) =
m−1
∑

j=0

AjBw(k + m − 1 − j) (6)

The variance of v(k) is

Rv =

σ2
vq1

0 0 0

0 σ2
vp1

0 0

0 0 σ2
vq2

0

0 0 0 σ2
vp2

= [
m−1
∑

j=0

AjBBT (Aj)T]Rw (7)

where Rw = I4. Therefore, the center of the recovery region is (q̂(k+m)1 , q̂(k+m)2).
We consider a radius for the recovery area equal to:

r = max[2σvq1
, 2σvq2

] (8)

The value of r is chosen in order to obtain a 95% confidence interval for the
projected recovery area. In other words, we can assume that the target will be
located in the recovery area with approximately 95% probability.

3.2 Distributed Kalman-Consensus Filter

In our prior work, Olfati-Saber [15] presented the Distributed Kalman Consensus
Filter that defined the theoretical foundation of distributed tracking of mobile
events. Algorithm 1 is the outcome of [15]. We feed our prediction model pre-
sented in the previous section to Algorithm 1 to predict the location of the target
after it is lost and to calculate the projected area for the recovery process.

Each node i runs the distributed estimation algorithm shown in Algorithm
1. We indicate with zi the observation performed by each node. Ni indicates
the neighbors of node i. The message that is periodically broadcasted contains
the following tuple: msgi =[ui, Ui, x̂i]. The local aggregation and calculation is
described in step 3, whereas the estimation of the consensus among the neighbors
is performed in step 4. The equations of the update of the filter are presented in
step 5. The sensing model that we use is the following:

zi(k) = Hi(k)x(k) + vi(k) (9)

8

Algorithm 1 Distributed Kalman Consensus Filter

1: Initialization: Pi = P0, x̄i = x(0)
2: while new data exists do

3: Locally aggregate data and covariance matrices:

Ji = Ni ∪ {i}

uj = HT
j R−1

j zj , ∀j ∈ Ji, yi =
∑

j∈Ji

uj

Uj = HT
j R−1

j Hj , ∀j ∈ Ji, Si =
∑

j∈Ji

Uj

4: Compute the Kalman-Consensus estimate:

Mi = (P−1

i + Si)
−1

x̂i = x̄i + Mi(yi − Six̄i) + εMi

∑

j∈Ni

(x̄j − x̄i)

5: Update the state of the Kalman-Consensus filter:

Pi ← AMiA
T + BQBT

x̄i ← Ax̂i

6: end while

where Hi(k) is the observation matrix and vi(k) is the zero-mean Gaussian noise
of the measurements of the ith node with covariance Ri. In our implementation,
we assume that the value of the observation matrices Hi(k) is the same for the
all nodes over time and it is equal to:

H =

(

1 0 0 0
0 0 1 0

)

We also assume that the value of Ri is equal to a constant for all the matrices:

Ri = σ2
RI2 (10)

The value of Q is the same for all the devices since it is only dependent on the
value of the process under observation that is the same for all the devices (i.e.,
the position of the moving target):

Q = σ2
0I4 (11)

Finally, P0 is defined as
P0 = σ2

RI4 (12)

4 Implementation and Experiment

4.1 Implementation

We built a proof-of-concept, mobile phone-based testbed to evaluate the Metro-
Track system. The testbed consists of Nokia N80 and N95 smart phones (shown

9

(a) (b)

Fig. 1: (a)From left to right: N95, GPS dongle, N80. (b)The boombox bike.

in Figure 1(a)) running Symbian OS S60. Both of them are equipped with a
microphone and a camera that are accessible via software. With respect to net-
work connectivity, they are both equipped with Bluetooth and WiFi interfaces.
The N95 phones also feature an integrated GPS and an accelerometer. Since the
N80 phones are not equipped with a GPS, we used an external dongle (shown
in Figure 1(a)) based on the SiRFstar III chipset connected to the phone via
Bluetooth. The devices use GPS information for sound source localization and
the recovery process. In our testbed, we used WiFi for local ad hoc communi-
cations between mobile phones and used UDP broadcasting. The MetroTrack
system is written in PyS60 [14], Nokia’s porting of Python 2.2 for Symbian OS
S60. Currently, PyS60 is more flexible than the Nokia implementation of J2ME
for the N80 and N95 phones with respect to the programming interface for ac-
cessing the sensors embedded on the phones. With respect to the Symbian C++
development environment, it provides high-level abstractions that are extremely
useful and convenient for the rapid prototyping of applications.

We implement an experimental sound source tracking application interfaced
with MetroTrack. The system architecture is illustrated in Figure 2. We record
sound samples using the microphone every 2 s. To estimate the distance from the
target, we compute the Root Mean Square (RMS) of the average sound signal
amplitude. If the calculated RMS value is distinctively greater than the ambient
noise level, the sensor determines that the target event is detected and feeds
the RMS value to the distance estimation component. An alternative method
is bearing estimation [6], but it is not applicable to mobile phones due to the
requirement of two microphones on one device with known orientation.

We implement two prediction mechanisms, a local Kalman filter (LKF) [10]
and a consensus-based distributed Kalman filter (DKF) [15] in order to eval-
uate the trade-offs between the two. The LKF is simply a special case of the
DKF without sharing information among neighboring devices. We implement
the DKF, as described in Section 3. With respect to the mathematical model
presented in Section 3, for the LKF, we assume that Ji = ∅ ∪ {i}.

The distance between the sensor and the sound source can be estimated
from the RMS value assuming that we know the original volume of the target
sound and the pattern of the sound attenuation over distance. The prototype

10

Fig. 2: System Architecture.

is based on a trilateration, which is a widely used localization scheme in GPS.
After estimating its location and distance from the target, each sensor shares this
information with its one-hop neighbors for trilateration, which require distances
from two reference points for 2-D localization. The target location estimated by
the sound source localization is fed into the Distributed Kalman filter component
as the observation of the node.

4.2 Experiment

We mount a boombox, which plays constant pink noise (i.e., a signal with a
frequency spectrum such that the power spectral density is proportional to the
reciprocal of the frequency), on the back of a bike (aka boombox bike). We move
it at a slow pace along paths around a university campus at approximately
walking speed. We set the speaker of the boombox to face down toward the
ground (as shown in Figure 1(b)) so that the sound would be reflected and
spread omni-directionally in 2-D dimensions.

We set up a tracking testbed composed of two N95 phones and nine N80
phones connected to nine Bluetooth GPS dongles. The sound is sampled by the
microphone on each phone for 0.5 s. The sampling is performed every 2 s. The
time interval between each sampling is 1.5 s. Because the mobile phones are
not always performing the tracking process (i.e., it can be defined as oppor-
tunistic), we argue that the maximum achievable sampling rate and minimum
transmission interval of the messages should be used. Energy cost is not an is-
sue if the device is not frequently involved in the tracking process. The values
of the intervals are those sufficient for both the N80 and N95 phones for the
RMS calculation, the distance estimation, the sound source localization, and the
Distributed Kalman filter update calculation. We note that in existing tracking
systems, the time intervals are much smaller than those used in MetroTrack (i.e.,
approximately 0.1-0.2 s) [7]. We set the WiFi transmission power to 100 mW .
The communication range is between 25 and 30 m.

We perform the sound source tracking experiment evaluating the accuracy
of the sound source localization as well as the effectiveness of the MetroTrack
tasking and recovery. The GPS trace of the target is shown in Figure 3(a).
Each person carries a phone and a Bluetooth dongle. Given the limitation of the
number of phones and people, we emulate the density of an urban setting by
allowing people to move around within 40 m from the target (i.e., the boombox

11

 42.39

 42.395

 17.28 17.285 17.29 17.295

 42.34

 42.35

 42.36

 42.37

 42.38

 42.39

 42.4

 17.25 17.26 17.27 17.28 17.29 17.3

La
tit

ud
e

(d
ec

im
al

 m
in

ut
es

)

Longitude (decimal minutes)

Loc trace
DKF trace
LKF trace
GPS trace

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100

Er
ro

r (
m

et
er

s)

Time (seconds)

Loc trace
DKF trace
LKF trace

(b)

Fig. 3: (a) Trace of target’s location. (b) Time trace of the localization error.

bike). Given the restriction of being within 40 m from the target, each person
was allowed to move randomly in and out of the sensing range (approximately
20 m). This mobility setup is sufficient for testing the effectiveness of the tasking
process. We emulate the case of losing the target by turning the sound off for 16
s and then turning the sound on again to observe whether the recovery process
is working effectively.

The trace of the target measured using the sound source localization scheme
is shown in Figure 3(a). (See the curve Loc trace in the plot.) As observed in
Figure 3(a), the measured location is noisy. The sound source localization error
is not only caused by the error of the RMS measurement but also by the error of
the GPS positioning estimation of the mobile sensors. Each mobile sensor uses
its own GPS receiver, and the accuracy of these receivers varies, even if they are
of the same model. Also, some mobile sensors do not have valid GPS readings
at all on a cloudy day. We have learned that calibrating the GPS reading among
different sensors and checking the integrity of the GPS position of the mobile
sensors is a real challenge that needs to be addressed in the future. The inset
in Figure 3(a) shows a zoomed section of the gap in the traces related to the
recovery phase. For clarity, the localization traces are not shown in the inset.

We also test the LKF and DKF estimations by setting σR to 7 m because
we learned by trying the experiment several times that the standard deviation
of the sound source localization error (σR) is approximately 7 m. The trace of
the LKF and DKF estimations of the target location is also shown in Figure
3(a). In order to show the correctness of the prediction mechanism, we plot the
time trace of the error of the location estimation in Figure 3(b). The target in
this figure starts at instant t = 0 from the top of the area to the bottom. In
Figure 3(b) we show the time interval of the first 100 seconds, including the
interval during which the target was lost (i.e., between time t = 37 s and t =
54 s). We observe that the estimation error of DKF is smaller than the error of
the LKF.

12

5 Simulation Study

We evaluate the performance of MetroTrack for a number of different deployment
scenarios using a time-driven simulator based on MATLAB. The simulation
results complement the experimental evaluation by studying issues not easily
evaluated in a small-scale testbed, such as scaling and a sensitivity analysis
of the system. In this section, we show the tracking duration performance for
various sensor densities and sensing ranges.

We run each simulation scenario 20 times with each simulation duration of
300s. The target event is active from the beginning to the end of every sim-
ulation run. The simulation area is a 1000m×1000m square. We assume an
omni-directional radio model with a transmission range of 100m. The sensing
ranges of 100m and 50m are tested. If the target is within the sensing range of
a tasked sensor, the sensor is able to estimate the location of the target. The
distribution of the localization error is modeled using a zero-mean Gaussian dis-
tribution with standard deviation σR = 20m. Targets characterized by mobility
patterns with larger standard deviations are more difficult to track. Every tasked
sensor estimates the location of the target once in every sampling interval of 1s.
The timeout value for the recovery process is 20s.

For the mobility of mobile sensors and the target, we consider the Constant
Velocity model [3], which is the underlying model that MetroTrack uses for the
Kalman filters, as discussed in Section 3. Initially, mobile sensors are randomly
placed according to a uniform distribution on the plane. The standard deviation
of the movement dynamics of the target and sensor nodes σ0 is 0.2m/s. When a
target or sensor node reaches the boundary of the simulation area, it changes its
direction toward one of the other sides of the simulation area. We have also sim-
ulated two other widely used mobility models, the Random Way-point model [9]
and the Manhattan model [2]. The results are basically similar to the simulation
study using the Constant Velocity model.

One of the main objectives of MetroTrack is to track the target for as long as
possible without losing it. Therefore, the duration of tracking is one of the main
performance metrics. Figure 4 shows the tracking duration with varying densities
and sensing ranges of mobile sensors. We measure the duration of tracking when
MetroTrack performs the information-driven tasking but it does not perform
the prediction-based recovery (no recovery). We then measure the duration of
tracking when MetroTrack performs the prediction-based recovery as well. We
compare the tracking duration when MetroTrack uses the Distributed Kalman
filter (Recovery with DKF) and when it uses the Local Kalman filter (Recovery
with LKF). The x-axis is the density of sensors, and the y-axis is the duration of
tracking. We run the simulation for 300 s. The tracking starts from the beginning
of the simulation. The target is lost before the simulation ends. As observed in
Figure 4, the prediction-based recovery prolongs the duration of the tracking.
Moreover, the recovery enables the tracking to last until the end of simulation
with the densities of greater than 200 sensors or more per km2 if the sensing
range is 100m. If the sensing range is 50 m as in Figure 4(b), the recovery
enables the tracking to last until the end with a density of 400 sensors. The

13

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

Density (number of sensors / km2)

Tr
ac

ki
ng

 D
ur

at
io

n
(s

ec
on

ds
)

No recovery
Recovery with LKF
Recovery with DKF

(a) Sensing range of 100 m.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

Density (number of sensors / km2)

Tr
ac

ki
ng

 D
ur

at
io

n
(s

ec
on

ds
)

No recovery
Recovery with LKF
Recovery with DKF

(b) Sensing range of 50 m.

Fig. 4: Tracking duration vs. density of mobile sensors.

extended duration by the recovery process is longer for the 50m sensing range
than for the 100m sensing range. It is interesting that the recovery processes
using both filters do not show much difference in tracking duration, whereas
the DKF showed better accuracy in prediction. The forwarding zone is the sum
of the radius of the recovery region, the sensing range, and the communication
range, as we explained earlier. The size of the forwarding zone is big enough to
absorb the impact of the inaccuracy of the prediction of the LKF.

6 Summary

In this paper, we proposed MetroTrack, the first distributed tracking system
that tracks mobile events using off-the-shelf mobile phones. We presented the
design and implementation of the system and discussed the mathematical foun-
dations upon which our distributed prediction models are based. We evaluated
the system through the deployment of a prototype implementation of the sys-
tem using Nokia N80 and N95 mobile phones and analyzed the performance of
the system for a number of different scenarios through simulation. While the
proof-of-concept prototype implementation of MetroTrack focused on tracking a
mobile audio source, we believe that the algorithms and techniques discussed in
this paper are more broadly applicable to an emerging class of problems related
to the efficient tracking of mobile events using off-the-shelf mobile devices such
as mobile phones, PDAs, and mobile embedded sensors.

7 Acknowledgement

This work is supported in part by Intel Corp., Nokia, NSF NCS-0631289, and the
Institute for Security Technology Studies (ISTS) at Dartmouth College. ISTS
support is provided by the U.S. Department of Homeland Security under award
2006-CS-001-000001, and by award 60NANB6D6130 from the U.S. Department

14

of Commerce. The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of any funding body.

References

1. T. Abdelzaher, Y. Anokwa, P. Boda, J. Burke, D. Estrin, L. Guibas, A. Kansal,
S. Madden, and J. Reich. Mobiscopes for human spaces. IEEE Pervasive Com-
puting, 6(2):20–29, 2007.

2. F. Bai, N. Sadagopan, and A. Helmy. IMPORTANT: A framework to systemat-
ically analyze the Impact of Mobility on Performance of RouTing protocols for
Adhoc NeTworks. In INFOCOM 2003, San Francisco, CA, USA, Apr. 2003.

3. T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad hoc
network research. Wireless Communications and Mobile Computing. Special issue
on Mobile Ad Hoc Networking, 2(5):483–502, 2002.

4. A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat Moni-
toring: Application Driver for Wireless Communications Technology. In Workshop
on Data Communications in Latin America and the Caribbean, Apr. 2001.

5. D. Cuff, M. Hansen, and J. Kang. Urban sensing: Out of the woods. Communica-
tions of the ACM, 51(3):24–33, 2008.

6. L. Girod, M. Lukac, V. Trifa, and D. Estrin. The design and implementation
of a self-calibrating distributed acoustic sensing platform. In 4th international
conference on embedded networked sensor systems (SenSys’06), pages 71–84, 2006.

7. T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru,
T. Yan, L. Gu, G. Zhou, J. Hui, and B. Krogh. VigilNet: An Integrated Sensor
Network System for Energy-Efficent Surveillance. ACM Transactions on Sensor
Networks, 2004.

8. Q. Huang, C. Lu, and G.-C. Roman. Spatiotemporal Multicast in Sensor Network.
In First ACM Conference on Embedded Networked Sensor Systems (SenSys’03),
2003.

9. D. Johnson and D. Maltz. Dynamic Source Routing in Ad Hoc Wireless Networks.
Mobile Computing, pages 153–181, 1996.

10. R. E. Kalman. A new approach to linear filtering and prediction problems. Trans-
actions of the ASME Journal of Basic Engineering, March 1960.

11. A. Kansal, A. A. Somasundara, D. D. Jea, M. B. Srivastava, and D. Estrin. Intel-
ligent fluid infrastructure for embedded networks. In MobiSys’04, pages 111–124,
New York, NY, USA, 2004. ACM.

12. Y.-B. Ko and N. Vaidya. Geocasting in Mobile Ad Hoc Networks: Location-based
Multicast Algorithms. In Workshop on Mobile Computer Systems and Applications
(WMCSA’99), Feb. 1999.

13. K. Lai, M. Feldman, Stoica, and J. Chuang. Incentives for cooperation in peer-to-
peer networks. In Workshop on Economics of Peer-to-Peer Systems, 2003.

14. Nokia. Python for s60. http://wiki.opensource.nokia.com/projects/PyS60.
15. R. Olfati-Saber. Distributed Kalman Filtering for Sensor Networks. In 46th IEEE

Conference on Decision and Control, Dec. 2007.
16. Purdue University. Cell phone sensors detect radiation to thwart nuclear terrorism.

http://news.uns.purdue.edu/x/2008a/080122FischbachNuclear.html.
17. J. Shneidman and D. C. Parkes. Rationality and self-interest in peer to peer

networks. In 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03),
2003.

