
CS 10:
Problem solving via Object Oriented 

Programming

Client/Server
Dartmouth CS10 Winter 2025 



2

Agenda

1. Sockets

2. Server

3. Multithreaded server

4. Chat server



3

Sockets are a way for computers to 
communicate

Server

Server is listening on 
a socket
(socket = address 
  + protocol 
  + port)

Port 80 = HTTP

IP: 1.2.3.4
HTTP
Port: 80



4

Sockets are a way for computers to 
communicate

Server

Server is listening on 
a socket
(socket = address 
  + protocol 
  + port)

Port 80 = HTTP

• Client 1 makes 
connection over 
socket

• Server receives 
connection, moves 
communications 
to own socket

IP: 1.2.3.4
HTTP
Port: 80 Client 1



Server

5

Sockets are a way for computers to 
communicate

Server is listening on 
a socket
(socket = address 
  + protocol 
  + port)

Port 80 = HTTP

• Client 1 makes 
connection over 
socket

• Server receives 
connection, moves 
communications 
to own socket

• Server returns to 
listening

• Server talking to 
Client 1 and ready 
for others

Client 1

IP: 1.2.3.4
HTTP
Port: 80



Server

IP: 1.2.3.4
HTTP
Port: 80

6

Sockets are a way for computers to 
communicate

Server is listening on 
a socket
(socket = address 
  + protocol 
  + port)

Port 80 = HTTP

• Client 2 makes 
connection over 
socket

Client 2

Client 1



Server

IP: 1.2.3.4
HTTP
Port: 80

7

Sockets are a way for computers to 
communicate

Server is listening on 
a socket
(socket = address 
  + protocol 
  + port)

Port 80 = HTTP

• Client 2 makes 
connection over 
socket

• Server receives 
connection, moves 
communications 
to own socket

• Server returns to 
listening

• Server talking to 
client 1 and 2 
ready for others

Client 2

Client 1



8

Agenda

1. Sockets

2. Server

3. Multithreaded server

4. Chat server



9

DEMO HelloServer.java: create our own 
server that listens for clients to connect

Run HelloServer.java

Fom terminal type “telnet localhost 4242”

Quit telnet session with Control + ] then type “quit”

Try connecting from multiple terminals

HelloServer.java



10

We can create our own server that will 
listen for clients to connect and respond

IP: localhost
HTTP
Port: 4242

HelloServer.java Create new ServerSocket listening on port 4242
Port chosen because nothing else there

Pause here until someone 
connects, then create Socket 
sock for them

• Create output writer and 
input reader using sock

• Send output to whomever 
connected

Read input from client 
until client hangs up 
(connection lost)
in.readLine() is null on 
hang up

Close up
• Reader and writer
• Sockets

This code can only handle one 
connection at a time

Server



11

We can create our own client too

HelloServer.java and HelloClient.javaHelloServer.java

Code for HelloServer on last slide

What is input and what is 
output is relative to each 
computer
• Input to Server is output 

from Client
• Output from Server is input 

to client

Socket out stream

Socket in stream Socket out stream

Socket in stream

Server side

Client side

HelloServer

HelloClient or 
Telnet



12

DEMO HelloClient.java: our Client that talks 
to our Server

Run HelloClient.java (waits for Server to come up)

Run HelloServer.java

HelloClient.java



13

Our Client talks to our Server
HelloClient.java Setup scanner to read 

client’s keyboard

Create Socket sock on same 
port as Server (4242)

Got Server connection, setup 
reader and writer

Output to console 
what the Server said Get input from scanner 

and send to Server

• If Server hangs up, don’t know it until you 
press enter on keyboard.  Why?

• console.nextLine() “blocks” execution

Loop until Server answers

sock will throw exception if 
Server not up, try every 5 
seconds until it is up

Client



14

Friends can connect to your server if they 
connect to the right IP address
Run MyIPAdressHelper.java to get your address, edit HelloClient.java 

Network Address 
Translation (NAT) on local 
router tells outsiders each 
inside machine has a 
different IP address (global 
address) from what IP 
address insiders see (e.g., 
129.170.212.159) 

Local network 
router gives inside 
computers a unique 
local IP address 
(e.g., 10.10.1.6)

Might need 
to add port 
forwarding 
on your 
firewall



15

DEMO: Connecting from another machine

HelloServer.java and HelloClient.java
• Run MyIPAddressHelper on server to get IP
• Start HelloServer.java on server
• Edit HelloClient.java to change localhost to server IP address
• Run HelloClient on client machines and make connection 
• Connect from student machine?



16

Agenda

1. Sockets

2. Server

3. Multithreaded server

4. Chat server



17

Currently our server can only handle one 
client at a time, use Threads for more users
Use Java’s Thread mechanism to overcome single client issue

public class MyThread extends Thread {
    void run() {
        …
    }

public class MainApp {
    void main() {
     MyThread t = new MyThread();
             t.start();

• Want multiple 
“concurrent” users

• Trick: give each user 
its own socket 

• Use threads that run 
concurrently with 
main process (more 
on threads next 
class)

• Threads are lighter 
processes than main 
program 

• Threads inherit from 
Java’s Thread class

• Instantiate object of 
type that extends 
Thread

• Call start on thread 
object to start 
thread process 
running 
“concurrently” with 
main process

• Class extends 
Thread

• Threads begin 
running at run() 
method, not main()

• Each thread 
responsible for 
handling one client



18

We can create a “Communicator” on a 
separate thread for each Client connection
Use Java’s Thread mechanism to overcome single client issue

Communicator object 
handles the socket between 
Server and one Client

Thread

Socket out stream

Socket in stream Socket out stream

Socket in stream

Server side

Client side

HelloServer 
Communicator

HelloServer

HelloClient or 
Telnet



19

By using Threads, one Server can handle 
multiple concurrent Clients
Use Java’s Thread mechanism to overcome single client issue

HelloServer 
Communicator

HelloServer

HelloClient or 
Telnet

HelloServer 
Communicator

HelloClient or 
Telnet

HelloServer 
Communicator

HelloClient or 
Telnet

HelloServer 
Communicator

HelloClient or 
Telnet

HelloServer 
Communicator

HelloClient or 
Telnet

Create a new Communicator 
object on a separate Thread on 
the server each time a client 
connects

Each communicator runs 
concurrently and manages 
connection with one client



20

DEMO HelloMultithreadedServer.java: 
handle multiple Clients concurrently
HelloMultithreadedServer.java

• Starts new thread with new HelloServerCommunicator on each 
connection

HelloServerCommunicator.java
• Extends Thread
• Override run
• Tracks thread ID
• Otherwise the same as single threaded version

Run HelloMultithreadedServer.java with multiple students 
connecting (after editing HelloClient.java with IP address)



21

By using Threads, one Server can handle 
multiple concurrent Clients
HelloMultithreadedServer.java

Create a ServerSocket to listen for 
incoming connections

• Pass new ServerSocket on 
port 4242 to constructor

• Then call getConnections()

• num keeps track of how 
many connections have 
been made

• Loop forever
• Put new connections on 

their own Thread with 
Communicator

setDaemon(true) means stop this Thread 
when the main Thread ends

start() causes a Thread to begin running 
in Thread Object’s run() method

Block until Client connects, 
then return new Socket

Big idea: start a new thread whenever a client connects 
so this thread can go back to listening for new clients



22

HelloServerCommunicator runs on its own 
Thread, handles one Client’s connection
HelloServerCommunicator.java • Extends Thread

• When start() called on Thread, it 
calls Thread’s run() method

Save socket to talk to Client and 
keep id for convenience

Setup run() to function the same as 
single-threaded version

Now this Thread runs independently of 
other Threads

Handles one Client connection

Stops when HelloMultithreadedServer 
stops (daemon true)

Print id number so we can 
track who is 
communicating



23

Agenda

1. Sockets

2. Server

3. Multithreaded server

4. Chat server



24

DEMO: Chat application

ChatServer.java and ChatClient.java
• Run MyIPAddressHelper on server to get IP
• Start ChatSever.java on server
• Edit ChatClient.java to change localhost to server IP address (in 

main())
• Run ChatClient.java to connect to ChatServer
• Run ChatClient.java from student machine?



25

Goal: Chat server allows communication 
between multiple clients

ChatServer

ChatClient(2)ChatClient(1)ChatClient(0) ChatClient(n-2) ChatClient(n-1)

Client sends message 
to server

When one Client sends 
a message, want to 
broadcast it to all 
other clients

Clients do not know 
about each other so 
Server coordinates 
messages

Server receives 
message from Client, 
then repeats message 
to all other Clients



26

Goal: Chat server allows communication 
between multiple clients

ChatServer

ChatClient(2)ChatClient(1)ChatClient(0) ChatClient(n-2) ChatClient(n-1)

Client sends message 
to server

What if a message 
comes into a Client 
that is “blocking” 
waiting for input 
from keyboard?

Would like to see 
message displayed 
even if typing (or    
if not typing)



27

Client listens for keyboard on main thread 
creates Communicator on second thread

ChatClient

Client

Client uses two threads:
1. Listen for keyboard input (blocks 

Thread until Enter key pressed)
2. Communicates with server on 

separate Thread (does not block 
waiting for keyboard input)

ChatClient 
Communicator

Server uses 
Communicator, one for 
each client

Both Server and Client 
side are now multi-
threaded

ChatServer 
Communicator

ChatServer



28

Client listens for keyboard on main thread 
creates Communicator on second thread

ChatServer 
Communicator

ChatServer

ChatClient

Client

ChatClient 
Communicator

ChatServer 
Communicator

ChatClient

ChatClient 
Communicator

ChatServer 
Communicator

ChatClient

ChatClient 
Communicator

ChatServer 
Communicator

ChatClient

ChatClient 
Communicator

ChatServer 
Communicator

ChatClient

ChatClient 
Communicator

Server has one Thread per 
Client

Each Client has 
two threads:
1. Keyboard
2. Communicator



ChatServer.java

29

ChatServer manages one Communicator 
for each Client

Server

Communicators

Client

Communicator

Set up ServerSocket to listen for 
Client connections

• Create one Communicator for each Client
• Keep Communicators in comms ArrayList

Block until Client connection, then create new 
Communicator running on its own Thread

• Returns new socket for this 
Communicator

• Also pass reference to this  
ChatServer object so clients 
can call methods on this object 
(call broadcast())

Set daemon, start 
Thread running, add 
to comms Arraylist

Add or remove Communicator 
Object from comms ArrayList



ChatServer.java

30

ChatServer manages one Communicator 
for each Client

Server

Communicators

Client

Communicator

Clients will ask Server to broadcast message to all 
Clients, loop over each Communicator (except 
Client that sent message) and ask Communicator 
to send a message to its Client

• Synchronized keyword makes sure that if two 
messages arrive at the same time, that broadcast 
finishes the first message before the second

• Topic of next class

main() set up ServerSocket listening on port 4242



ChatServerCommunicator.java

31

Each ChatServerCommunicator runs on 
own Thread and talks with one Client

Server

Communicators

Client

Communicator

• Save socket to communicate with Client
• Save ChatServer to communicate with 

ChatServer Object (e.g., call broadcast())

run() called when Thread is started

Extend Thread to run in own thread

Set up in reader and out writer as before

On any input from Client, call broadcast() on Server
broadcast() on Server will call send() on each 
Communicator (next slide)

When Client hangs up, call removeCommunicator() on 
Server and shut down this Thread



ChatServerCommunicator.java

32

Each ChatServerCommunicator runs on 
own Thread and talks with one Client

Server

Communicators

Client

Communicator

When another Client sends a message 
to the Server via broadcast() method, 
the Server will call send() on each 
Communicator to broadcast the 
message to all Clients



ChatClient.java

33

ChatClient manages keyboard input and 
creates a ChatClientCommunicator 

Server

Communicators

Client

Communicator

Set up scanner for keyboard input

Create Communicator on another 
Thread (so not stopped by blocking 
scanner), start Thread running

main() calls constructor passing socket on 
localhost port 4242 then handleUser()

If Server hangs up, Communicator will 
call this method to inform ChatClient 
Object

While Server is connected, block here (due to 
scanner nextLine()) until user presses enter key, 
then tell Communicator to send keyboard messages 
to Server



ChatClientCommunicator.java

34

ChatClientCommunicator runs on its own 
Thread to communicate with Server

Server

Communicators

Client

Communicator

Run on own Thread so not blocked by 
scanner

• Save socket to communicate with ChatServer
• Save client to communicate with ChatClient 

Object (call hangUp() if server hangs up)

Send keyboard message passed by 
ChatClient Object to Server

Read data from ChatServer and write 
to console

If ChatServer hangs up, tell ChatClient 
Object, then end Thread



35


	Slide 1
	Slide 2: Agenda
	Slide 3: Sockets are a way for computers to communicate
	Slide 4: Sockets are a way for computers to communicate
	Slide 5: Sockets are a way for computers to communicate
	Slide 6: Sockets are a way for computers to communicate
	Slide 7: Sockets are a way for computers to communicate
	Slide 8: Agenda
	Slide 9: DEMO HelloServer.java: create our own server that listens for clients to connect
	Slide 10: We can create our own server that will listen for clients to connect and respond
	Slide 11: We can create our own client too
	Slide 12: DEMO HelloClient.java: our Client that talks to our Server
	Slide 13: Our Client talks to our Server
	Slide 14: Friends can connect to your server if they connect to the right IP address
	Slide 15: DEMO: Connecting from another machine
	Slide 16: Agenda
	Slide 17: Currently our server can only handle one client at a time, use Threads for more users
	Slide 18: We can create a “Communicator” on a separate thread for each Client connection
	Slide 19: By using Threads, one Server can handle multiple concurrent Clients
	Slide 20: DEMO HelloMultithreadedServer.java: handle multiple Clients concurrently
	Slide 21: By using Threads, one Server can handle multiple concurrent Clients
	Slide 22: HelloServerCommunicator runs on its own Thread, handles one Client’s connection
	Slide 23: Agenda
	Slide 24: DEMO: Chat application
	Slide 25: Goal: Chat server allows communication between multiple clients
	Slide 26: Goal: Chat server allows communication between multiple clients
	Slide 27: Client listens for keyboard on main thread creates Communicator on second thread
	Slide 28: Client listens for keyboard on main thread creates Communicator on second thread
	Slide 29: ChatServer manages one Communicator for each Client
	Slide 30: ChatServer manages one Communicator for each Client
	Slide 31: Each ChatServerCommunicator runs on own Thread and talks with one Client
	Slide 32: Each ChatServerCommunicator runs on own Thread and talks with one Client
	Slide 33: ChatClient manages keyboard input and creates a ChatClientCommunicator 
	Slide 34: ChatClientCommunicator runs on its own Thread to communicate with Server
	Slide 35

