RC 13972 (#66791) 9/18/89
Computer Science

Research Report

An Introduction to the C Programming
Language

Charles C. Palmer

IBM Research Division
T. J. Watson Research Center
Yorktown Heights, NY 10598

NOTICE

This report will be distributed outside of IBM up to one yrrai after the IRM publication date.

= Research Division
T= Almaden « T.J. Watson « Tokyo <« Zurich

IBM Internal Use Only

An Introduction to the C Programming
Language | |

Charles C. Palmer
CPALMER at YKTVMZ

IBM Research
T. J. Watson Research Center
Yorktown Heights, NY 10598

Abstract: This course was developed at the Thomas J. Watson Research Center during the
years 1984-1988 for the Research Professional Education Program. It was restructured into a
two-day presentation for the Corporate Education Network as course #IYT0040! in
September, 1988. This report consists of the class notes used in this course:

The course assumes that the student has some background in programming in a
block-structured language such as PASCAL, PL/1, PL/S, REXX, etc.. The course covers all
the features of the language and stresses portability, efficiency, and maintainability. Various
C language processors are discussed and compared, including:

IBM C (DOS, VM, & MVS), Waterioo C (same), Microsoft C (DOS),
Turbo-C (DOS), DICE (IUO DOS, VM, Unix™), and Unix™ C compilers.

An Introduction to
the C Programming Language

September 19-20, 1988

Charles Palmer
CPALMER at YKTVMZ
(CENET Course #lYT0040I)

(il
uyld
i

T. J. Watson Research Center
Yorktown Heights, NY
Internal Use Only

This course was developed at the Thomas J. Watson
Research Center during the years 1984-1988 for the
Research Professional Education Program. It was
restructured into a two-day presentation for the
Corporate Education Network. The twelve 50-minutes
sessions will cover the following topics:

1 Day 1

Introductions & paperwork

Textbooks & other references

C Philosophy

Some available C language processors
General C program structure

C conventions

C data types

¢ Character strings & arrays | |
Examples: strcat() & strlen()
Primitive 1/0 functions |
stdin and stdout

Redirection

Simple 1/0

printf()

scanf()

C Class #0 ii

¢ Usual Operators

- e Unusual, Very Specialized Operators
e Expressions & Statements
e Automatic Conversions

¢ Conditional Statements (if-then-else)
¢ Relational Operators

¢ C Truth

¢ Logical Operators

e Conditional Operator

® while loop |
¢ for loop and the comma operator |
® do while loop

® break and continue

* switch

e goto (ugh!)

C Class #0 | iii

Preprocessor directives
Debugging Techniques

Storage classes and scope
First day discussion/chalk-talk

8 Day 2

Writing your own functions
Local variables

Call-by-value .vs. call-by-name
Basic pointer use

More about arrays
All about pointers to everything
Multi-dimensional arrays

C Class #0

iv

10

e Character strings and pointers
e String-oriented I/O

e Standard string functions

e Command-line arguments

11

¢ Fancy Declarations

¢ Pointers to Functions

e Structure Type Specifiers
* Union Type Specifiers

12

o Typedefs .

¢ Enumerations

e Bit Fields

The C Library

File 1/0 |

Dynamic Memory Allocation
Program Termination

What is C+ +

Where to Get Help

C Class #0 v

B#

Use C!

C Class #0

vi

‘ An Introduction to
the C Programming Language

Class 1

September 19-20, 1988

Charles Palmer
CPALMER at YKTVMZ

(CENET Course #YT0040I)

T. J. Watson Research Center
Yorktown Heights, NY
Internal Use Only

Outline

» Introductions & paperwork

*» Textbooks & other references

+ C Philosophy

+» Some available C language processors
* General C program étructure

x C conventions

» C data types

C Class #1 1 ' Outline

Suggested Prerequisites

¢ Some programming eXperience, preferably
with procedural languages such as PASCAL,
PL/1, ALGOL, efc. -

* Access to VM or PC C language processor‘s

e A sense of humor

C Class #1 T 2 Suggested Prerequisites

Class Text

Harbison & Steele
e “A C Reference Manual”
e Best all-around reference
* Not a “how to” book
e Good examples and explanations
e Best available for portability questions

e Second edition includes proposed ANSI-C
standard

C Class #1 | , 3 , Class Text

Other Texts

¢ Kernighan & Ritchie (K & R)

“The C Programming Language”
The original “holy book” of C

Very concise; originally the standard
definition "

Rather vague on some points

New expanded second edition now
available (some ANSI-C comments)

e Waite, et.al.

“C Primer Plus”

A gentler infroduction

Lots of explanations & examples
Great pictures

Handy-dandy reference card

Second ediﬁon now very Microsoft
oriented

» Piles of good & bad C books in the bookstores

C Class #1

4 Other Texts

Other References

¢ Unix(tm) or AIX manuals
e C language processor documentation
¢ Unix Review (magazine)

* Dr. Dobb’s Journal (magazine)

C Class #1 _ 5 Other References

C Philosophy

° Efﬁciency

e Access to hardware
e Availability

¢ Portability

® Flexibility

CClass #1 = 6 C Philosophy

‘Some Available Language
- Processors

e All Unix (tm) systems
¢ Host Based
- — Waterloo C (VM & MVS)
- — PL.8 Front End (IUO)
— IBM Host C Compiler (PO for VM & MVS)
— AT&T C370 (Old, not recommended)
e PC Based |
— IBM Personal Computer C & C/2
~— Microsoft C (versions 3, 4, 5, ...)
— Turbo-C .
— Waterloo C
* All of the above systems

~ DICE (1UO)

C Class #1 7 Language Processors

General C Program Structure

#include "stdio.h"
main()

{

int answer;

answer = 42;

printf(" The answer is %d ! \n", answer) ;

C Class # 8 General C Program Structure

Traditional C Style

e Variables are in lower case
— int bologna, banana, bordeaux;

— Variable name length significance
depends on language processor

e Functions are in lower or mixed case
— printf(“Year End Report\n”);
— ShowMenu(menuname, color);
e Constants are in UPPER case
— #define P! 3.1415
e Lots of white Space
¢ Indentation
— No standard indentation practicé

— Pick one that you like and stick with it

C Class #1 | 9 Traditional C Style

Indentation Style 1

(K & R)

/* A program to print a Fahrenheit to Celsius Table :
for the values 0, 20, ..., 300 degrees F. */

main()

{
int lower, upper, step;
float ftemp, ctemp;

0; o /* lower limit of table */

lower =

upper = 300; /* upper limit */

step = 20; | |

ftemp = lower; /* start at the bottom */

while (ftemp <= upper) {
ctemp = (5.0 / 9.0) * (ftemp - 32.0);

printf("%4.0f %6.1f\n", ftemp, ctemp);
ftemp = ftemp + step;

}

exit (0);

C Class #1 : 10 Indentafion Style 1

Indentation Style 2

(CCP)

/* A program to print a Fahrenheit to Celsius Table
for the values 0, 20, ..., 300 degrees F. */

main ()
{

int lower, upper, step;
float ftemp, ctemp; '

lTower = 0; /* lower limit of table */

upper = 300; /* upper limit */

step = 20;

ftemp = Tower; /* start at the bottom */

while (ftemp <= upper)

{ ,
ctemp = (5.0 / 9.0) * (ftemp - 32.0);
printf("%4.0f %6.1f\n", ftemp, ctemp);
ftemp = ftemp + step;

}

exit (0);

C Class #1 - 11 Indentation Style 2

Indentation Style 3

(Job S*ecurity)

/* F2C */

main() { |
int 1=0,u=300,s=20; float f;
f=1;
while(f<=u) { |
printf("%4.0f %6.1f\n",f,(5./9.)*(f-32.));
f=f+s; }
exit(0); }

This is NOT recommended style

C Class #1 12 Indentation vSter 3

C Data Types

int - integer; can be further specified as short,
long, or unsigned -

® int orange;
¢ long int banana; |
e short kiwi; /* the int is optional */

char character; a single byte that can hold at
most one character (0-255)

o char letter;
float floating point number; usually 32 bits long
* float depth;

double double precision floating point humber;
usually 64 bits

e double width;

C Class # 13 ~ C Data Types

- C Data Types

Sizes (in bytes)

Datatype VM or MVS PC or PS/2
char 1 1
int 4 2
short 2 2
long 4 4
float 4 4
double 8 8

C Class #1 » 14 - C Data Types

Declaring Variables

Why do it at all?

* Some data is type-sensitive

e Promotes better programming practices
° Helps to preVent bugs (bozo .vs. b0zo)
° Simpliﬁes the compilér

e Helps to prevent run-time surprises

C Class # | 15 Declaring Variables

Declaration Syntax

In general, the syntax is simply a data-type,
followed by one or more variable names,
separated by commas, followed by a semicolon.

int score;
float average;
char grade;

The variables may also be initialized and several
variables of the same type can be placed on one
statement.

int carnumber = 54, where, who = 0;
float c = 2.997925e10;

char bell = 007,

double height, weight, density;

C Class #1 T 16 “Declaration Syntax

Using Constants

* integers

* Signed whole numbers 12, -12392, +32767
Hexadecimal numbers 0x0c, OxFFFE, 0x434350
~ Octal numbers 014, 077, 01237

An additional long specification can be given
to force long-sized constants:

5281, 0x0012L
e characters:

cas, 50!, ‘ s, &y
“‘n’, \007°, \V

e floating point numbers 1., .42, -2.17524, -4e16

C Class #1 ' 17 Using Constants

Arrays

e An array is simply a series of elements of the
same data type. They are declared like this:
inta[3];

e Typically, they are stored in consecutive
memory locations, each one large enough to
hold a single variable of the specified data

type.

e Arrays can have any number of dimensions.

e C arrays are always “zero origin”, so the
array above would have elements a[0], a[1],
and a[2]. R

® Arrays of dimensions greater than one can be
thought of as “arrays of arrays”.

e Arrays can have the same data types and
storage classes as ordinary values (scalars),
with the same defaults.

e Arrays are stored in row-major order.

¢ No array bounds-checking is done at any time.

C Class #1 } 18 - ~ Arrays

Arrays

How much to declare?

The length of an array, a constant expression, may
be omitted as long as it is not needed to allocate
storage :

1. The object being declared is a formal
~ parameter of a function.

2. The declarator is accompanied by an initializer
from which the size of the array can be
deduced. | |

‘3. The declaration is not »a defining occurrence,
~ that is, it is an external declaration that refers .
to an object defined elsewhere.

C Class #1 , 19 Arrays

Arrays

An exception to these cases is that the declaration
of any n-dimensional array, where n>1, must
include the sizes of the last n-1 dimensions so that
the accessing algorithm can be established. For
example, an array a[2][3] is thought of like this:

00

01

02

10

1"

12

The array is actually stored like this:

00

01

02

10

"M

‘ .

So, knowing a[][3] is enough to define how to

access the array as it is thought to be.

C Class #1

20

- Arrays

Arrays

Sample Declarations

- int queue [5]; /* defining occurrence */

float weights [] = { 174.2, 115.0, 17.7 };
/* can deduce size */

functionname (pile)

int pile []

{ ... /* a formal parameter
of a function */

extern double dip []; /* external vector */

extern int twod [] [50] ;
/* external, but last

dimension must be
supplied */

C Class #1 21 Arrays

Example ' Program

/* Program to ask for & accept a char, and then
print its decimal, hex, & octal equivalents. */

main()

{

char ch;

/* prompt the user & accept the input */
printf("Hit a key, any key, then ENTER...\n");
scanf("%c", &ch); , :
/* show its decimal value */ -
printf("The code for the character %c is:\n",ch);
printf("%d (decimal), ", ch);
printf("%0 (octal), ", ch);
printf("%x (hex).\n ", ch);
exit(0);

}

pl22

Hit a key, any key, then ENTER...

A

The code for the character A is:

193 (decimal), 301 (octal), c1 (hex).

pl22

Hit a key, any key, then ENTER...

a .

The code for the character a is:

129 (decimal), 201 (octal), 81 (hex).

C Class #1 22 Example Program

| An Introduction to
the C Programming Language

Class 2

September 19-20, 1988

Charles Palmer | |
CPALMER at YKTVMZ
(CENET Course #IYT0040I)

flnl]
(KN

'illll
wil))

T. J. Watson Research Center
Yorktown Heights, NY
Internal Use Only

- Outline

* Character strings & arrays
» Examples: strcat() & strlen()
* Primitive 1/0 functions

* stdin and stdout

+ Redirection

* Simple 1/0

* printf() |

* scanf()

C Class #2 ’ 1 Outline

Character Strings

¢ Defined as a run of consecutive memory |
locations the last of which is set to \0’ (NULL).

* One way to declare a character string is:

char sing[] = "put the lime";

¢ This allocated the exact amount of memory
needed. '

\0

* The NULL was automatically generated by the
initialization
e The NULL makes keeping track of the string

length unnecessary

* [f you are building strings, YOU must supply
the NULL

Char Sing[] - {'p','u',’t',' l’ltl’lhl’
lel’l I’I1I’Iil’lml’lel’l\0l };

C Class #2 2 | Character Strings

strcat() and strien()

These are standard library functions that are used
“with character strings. The programmer can
assume that they will always be present in the
run-time library.

e strcat() copies one string onto the end of
another. | |

— The copy starts at null of the target string,v
and continues up to, and including, the
null of the string being copied.

— It is the programmer’s responsibility to
insure there is enough room at the target.
 If there isn‘t, this function will happily
overwrite whatever follows the target.

~ o strlen() returns as its value the number of
characters in the given string, excluding the
null. |

C Class #2 | 3 strcat() and strien()

Example: Building character
strings with strcat()

/* Example program that appends one string onto another
using the standard library function strcat() */

main()

{ |

"in the coconut";
"put the lime ";

static char fee[]
static char fie[60]

strcat(fie, fee);
vpr‘intf(-" \"o/oS\" \n"’ fie);
exit(0);

}

p24

"put the lime in the coconut"

CClass #2° 4 — strcaf() Example

How strcat() works

fie [60] (before)

P u t t h e

l i m e \0 \0 \0
\0 \0 \0 \0 | \0 \0 \0 \0
\0‘ \0 \0 \0 \0 \0 \0

fee [] (before)

i n t h e c
o c o h u t \0

fie [60] (after)

P u t t h e

| i m e i n

t h e c o c o
n u t \0 \0 \0 \0

fee [] (after)

i n -t h e c
o c o h u t \0

C Class #2

How strcat() works

How strlen() works

/* character string initialization example */

main()

{ ;

char iswhat[40];

static char quote[60] = {
lJl’lal’lml’Ubl’la|’l]l’lal’lyl’lal’

‘l l’lil’lsl’l ' };

printf("Complete the sentence : '%s ...'\n",quote);
scanf("%s", iswhat);
printf("Your answer of %d characters ",
strlen(iswhat));
printf("makes the sentence read:\n ");
printf("%s%s\n", quote, iswhat);

| exit(0);
}

p26 |

Complete the sentence : 'Jambalaya is ...’

great! | I

Your answer of 6 characters makes the sentence read:
Jambalaya is great! 3

C Class #2 6 How strien() works

Single Character 1/0

e getchar() : Gets one character from stdin and
returns that character as the function’s value.

» putchar(c): takes one character from the
- executing program and sends it to stdout.

#include <stdio.h>
/* Program to echo one char from stdin to stdout */

main()

{

char ch;

ch = getchar();
putchar(ch);

}

p27
z[enter]

C Class #2 7 _ Single Character 1/0

Slick Echo Program

#include <stdio.h>

/* Program to echo one char from stdin to stdout */
main()

{
}

p28

![enter]
!

putchar(getchar());

C Class #2 8 Slick Echo Program

Buffered .vs. Unbuffered 1/0

When the echo program is run on some systems,
the character is not accepted until you hit the
enter key and only then is it written back to the
screen. These are “buffered” systems (i.e. VM &
MVS). |

¢ [t can be more efficient to send complete -
packages rather than one character at a time.

¢ The buffering allows the user to correct typos
before they are sent to the program.

If the echo program is run on a system that uses
‘unbuffered i/O, the character entered is |
immediately passed to the program which will
immediately write it back to fhe screen (i.e; UNIX
in raw mode).

e Interactive programs expecting many short
input strings work best in an unbuffered
system.

Some C library packages provide both buffered as
well as unbuffered I/O functions. A

C Class #2 9 Buffered .vs. Unbuffered I/0

So What Is stdio.h Anyway?

It is a file that is supplied with the language
- processor that contains information about input
and output:

e Useful #define’s like NULL and EOF

e Many l/O “functions” are actually macros
defined here :

¢ Usually some structure and type definitions

e YOU DON’T ALWAYS NEED IT - see your
documentation

CClass 2 v 10 So What Is stdio.h Anyway?

Echoing Lots of Chars #1

#include <stdio.h>
#define QUIT '#'

/* copy lots of chars from stdin to stdout */
main()
-

char ch;

int count=0;

ch = getchar();

while (ch != QUIT)

(‘
count = count + 1;
putchar(ch);
ch = getchar();

}

printf("\n%d chars were read.\n",count);

}

p211

abcdef [enter]
abcdef
BYEBYE!#[enter]
BYEBYE!

14 chars were read.

p211
Zz#ahcdefabcdefabcdefabcdefabcdefabcdefabcdef [enter]

Y44
2 chars were read.

C Class #2 1 Echoing Lots of Chars #

Echoing Lots of Chars #2

#include <stdio.h>
#define QUIT '#'

/* copy lots of chars from stdin to stdout */
main()
{

char ch;

int count=0;

/* Make use of what getchar() returns */ '
while((ch = getchar()) != QUIT)

{
count = count + 1;
putchar(ch);
printf("\n%d chars were read.\n",count);
y h 5 S
p212

This is a test of the early warning ...#
This is a test of the early warning ...
39 chars were read.

CClass #2 ‘ 12 Echoing Lots of Chars #2

The EOF Character

C processors #define (in stdio.h) a constant
named EOF that is set to a character that the -
system input routines will return if they reach
end-of-file. Most of the time, it happens to be set

to -1. |

e On PC’s running PCDOS, the way you enter
EOF is with control-z.

e On PC’s running UNIX™, control-d sends EOF
to your program.

. On VM, using CW, you enter EOF by setting a
pfkey to a special EBCDIC character (0x03).

e Using IBM Host C (VM & MVS) as well as
AT&T C370 (VM), you must enter ‘/*’, starting
in column 1, on a line by itself to signal EOF
(JCL lives!).

C Class #2 13 - The EOF Character

Echoing Lots of Chars #3 '

#include <stdio.h>

/* copy lots of chars from stdin to stdout */
main()
{

char ch;

int count=0;

/* Make use of what getchar() returns */
while((ch = getchar()) != EOF)

{
count = count + 1;
putchar(ch);
}
printf("\n%d chars were read.\n",count);
}
p214

"Go ahead, make my day", said the burly operator to ...”Z[enter]
"Go ahead, make my day", said the burly operator to ...
54 chars were read.

C Class #2 14 Echoing Lots of Chars #3

STDIN and STDOUT

e Defaults: stdin = = input device, stdout ==
output device

¢ scanf() always reads from stdin, p'rintf always
writes to stdout

* Most systems allow redirection of stdin and
stdout

e Using printf() and scanf(), and redirection, you
can accomplish limited file 1/0

¢ Great for testing

e All UNIX™ systems, PCDOS, and VM &
MVS(IBMC & CW only)

C Class #2 | 15 STDIN and STDOUT

Redirection

Redirection of stdin and stdout provide great
flexibility in how you can write, test, and use
programs.

To redirect stdin, follow the program’s name with a
‘<’ followed by where the input is to come from (-
i.e. a file or device).

To redirect stdout, follow the program’s name with
a ‘>’ followed by where the output is to go (i.e. a
file or device). Some systems (PCDOS and
UNIX™) provide a ‘>>’ operator that will append
the redirected stdout to the end of a file if it
already exists. |

Another stream, stderr, is where error messages
are sent. It also defaults to the output device.
Using this stream can keep error and other
non-data messages from getting mixed up in the
stdout stream. The stderr stream can only be
redirected under UNIX™ systems.

C Class #2 | 16 Redirection

Redirection Rules

e A redirection operator connects an executable
program (command) with a file or device. It
can not be used to connect one file to another
or one program to another.

e Input can not be taken from more than one file
or device, nor can output be directed to more
than one file or device using these operators.

e Whether or not spaces are required around
the operators is, unfortunately, operating
system dependent.

C Class #2 17 Redirection Rules

A Character Counting Program

#include <stdio.h>

main()
{

int count = 0;

while((getchar()) != EOF)
count = count + 1;
printf("The input consists of %d characters.\n",
count) ;
exit(0);
}

p218

abcdefg[enter]

hijkimnop[enter]

grstuventer]

wxyz~Z[enter]

The input consists of 29 characters.

p218 < p218.c
The input consists of 183 characters.

p218 < p218.c > whatever.fil

type whatever.fil
The input consists of 183 characters.

C Class #2 | 18 A Character Counting Program

An Uppercasing Filter

A filter is a program that accepts stdin, changes it
in some way, and the sends it to stdout. Examples
are sort & more, or a program that would convert
stdin to uppercase:

#include <stdio.h>
main()

{

char ch;
while((ch = getchar()) != EOF)
putchar(toupper(ch));

exit(0);
}

p219 < p219.c
#INCLUDE <STDIO.H>
MAIN()
{
CHAR CH; ‘
WHILE((CH = GETCHAR()) != EOF)
PUTCHAR(TOUPPER(CH));

EXIT(0);
}

C Class #2 19 ~ An Uppercasing Filter

printf() & scanf()

o ‘“standard” fuhctions

¢ Both expect a control stnng and an optlonal
list of arguments.

e Various conversion specifications are available

e There MUST be the right number of
conversion specifications for the arg list.

/* RIGHT! */
printf ("The sum of %d and %d is %d \n", a, b, a+h);

/* WRONG! */
printf ("The sum of %d and %d is %d \n", a, b)3

C Class #2 | 20 | printf() & scanf()

printf() conversion modifiers

A conversion specification begins with the ‘%’ and
is followed by the following elements in the
following order: |

1. optional flag characters
o ‘_’: left-justify the field
e ‘0’ : use ‘0’ as the pad character
e ‘4’ : always produce a sign ‘+’ or ‘-’
e ‘’: always produce either a leading ‘-’
sign or a space
e “4 : try to identify the type of the output
- 2. an optional minimum field width expressed as
an integer |)
3. an optional precision specification, given as a
¢’ followed by the number of digits to appear
after the decimal
4. an optional long size specification specified as
P (lowercase L) to indicate that the argument
is long. |
5. a required conversion operation, one of the
characters “cdeEfgGousxX%"”.

- C Class #2 21 printf() conversion modifiers

printf() conversion modifiers

%d signed decimal conversion from type int or
long '

%c the argument is printed as a single character

%s the argument is expected to be the address
of an area which is printed as a character
string | | |

%e,%E
signed decimal floating-point conversion is
performed. The output is in the form
[—]d.ddddde +dd or [—]d.dddddE +dd. One -
digit appears before the decimal point, the
precision specifies the number of digits to
follow the decimal point.

%f signed decimal floating-point conversion is
performed. The output is in the form
[—]ddd.dddd. The precision specifies the
number of digits to follow the decimal point.

C Class #2 | 22 printf() conversion modifiers

printf() conversion modifiers

oA)Q,O/OG
signed decimal floating-point conversion is
performed. If the value to be printed is not
too large or small, then f format is used;
- otherwise, e or E is used. The output should
be in whichever form takes the least amount
of room.

%u unsigned decimal conversion from type
~ unsigned int or unsigned long.

%o unsigned octal conversion from type unS|gned
int or unsngned long.

%x,%X : |
unsigned hexademmal conversion from type
unsigned int or unsigned long. The x form .
uses 0123456789abcdef as digits, whereas the
X form uses 0123456789ABCDEF

% A single percent sign is printed.

C Class #2 23 printf() conversion modifiers

printf() formatting examples

The following pages (from the text) were generated
using various printf conversion modifiers. For example,
the third line of the first page was generated with

printf ("%6s|%#5d|%#50|%#5x|%#7.2f|%#10.2e|%#10.4g]\n",
neuv 45, 45, 45, 12.678, 12.678, 12.678);

C Class #2 “ , 24 printf() formatting examples

__________ e e e e e ——————————————
Value -> 45 45 45 12.678 12.678 12.678

Operation-> 5d 50 5x 7.2f 10.2e 10.4g
Flags: |

__________ o e e e
% 45 55 2d] 12.68] 1.27e+01 12.68
%0 00045 {00055 |0002d|0012.68]001.27e+01{0000012.68
%# 45| 055| 0x2d| 12.68] 1.27e+01 12.68
%#0 0004500055 |0x02d |0012.68|001.27e+01{0000012.68
% 45 55 2d| 12.68| 1.27e+01 12.68
% 0 004500055 (0002d| 012.68] 01.27e+01| 000012.68
% # 45| 055| 0x2d| 12.68| 1.27e+01 12.68
% #0 0045|00055|0x02d| 012.68] 01.27e+01| 000012.68
%+ +45 55 2d| +12.68] +1.27e+01 +12.68
%+0 +0045|00055|0002d|+012.68|+01.27e+01|+000012.68
%+# +45| 055| 0x2d| +12.68| +1.27e+01 +12.68
%+#0 +0045 {00055 |0x02d [+012.68|+01.27e+01|+000012.68
%+ +45 55 2d| +12.68| +1.27e+01 +12.68
%+ 0 +0045|00055]0002d [+012.68]+01.27e+01|+000012.68
%+ # +45| 055| 0x2d| +12.68{ +1.27e+01 +12.68
%+ #0 +0045|00055|0x02d | +012.68|+01.27e+01|+000012.68

%- 45 55 2d 12.68 |{1.27e+01 |12.68

%-0 45 55 2d 12.68 |1.27e+01 |12.68

45 055 |0x2d {12.68 |1.27e+01 [12.68
%-#0 45 055 |0x2d |12.68 |1.27e+01 [12.68
%- 45 |55 2d 12.68 | 1.27e+01 | 12.68
0 45 |55 2d 12.68 | 1.27e+01 | 12.68
%- # 45 1055 |0x2d | 12.68 | 1.27e+01 | 12.68
0 45 055 |0x2d | 12.68 | 1.27e+01 | 12.68
%-+ +45 |55 2d +12.68 [+1.27e+01 [+12.68
%-+0 +45 |55 2d +12.68 |+1.27e+01 |+12.68
% -+ +45 (055 |{0x2d [+12.68 |+1.27e+01 |+12.68
%-+#0 +45 1055 |0x2d [+12.68 {+1.27e+01 |+12.68
%=+ +45 |55 2d +12.68 |+1.27e+01 |+12.68
0 +45 |55 2d +12.68 |[+1.27e+01 |+12.68

%-+ # +45 1055 |0x2d |[+12.68 |+1.27e+01 |[+12.68
0 +45 |055 |(0x2d |+12.68 |[+1.27e+01 |+12.68

C Class #2 - 25 printf() formatting examples

. e ———————— o e e e e o e e e
Value ->"zap"” '*'" none -3.4567 -3.4567 -3.4567

Operation-> 5s 5¢c 5% 7.2f 10.2e 10.4g
Flags: |
‘ —--.---——---+-,----------------7‘ """ R
% - zap * %| -3.46| -3.46e+00 -3.457
%0 00zap |0000*|0000%|-003.46|-03.46e+00(-00003.457
%# zap * %| -3.46| -3.46e+00 -3.457
%#0 00zap|{0000*|0000%|-003.46|-03.46e+00|-00003.457
% zap * %| -3.46] -3.46e+00 -3.457
% 0 00zap|0000*|0000%|-003.46|-03.46e+00}-00003.457
% # zap * %| -3.46| -3.46e+00 -3.457
% #0 00zap|0000* |0000%|-003.46]|-03.46e+00|-00003.457
%+ zap * %| -3.46) -3.46e+00 -3.457
%+0 00zap|0000*|0000%|-003.46|-03.46e+00|-00003.457
%+ zap * %| -3.46| -3.46e+00 -3.457
%+#0 00zap|0000*{0000%|-003.46|-03.46e+00|-00003.457
%+ zap * %! -3.46| -3.46e+00 -3.457
%+ 0 |00zap|0000*|0000%{-003.46]|-03.46e+00|-00003.457
%+ # zap * %| -3.46| -3.46e+00 -3.457
%+ #0 00zap|0000* {0000%|-003.46|-03.46e+00|-00003.457
%- lzap |* % -3.46 |-3.46e+00 |-3.457
%-0 |zap |* % -3.46 |-3.46e+00 |-3.457
%-# zap |* % -3.46 |-3.46e+00 |-3.457
%-#0 zap |* % -3.46 |-3.46e+00 |-3.457
%- zap |* % -3.46 |-3.46e+00 |-3.457
%- 0 zap |* % -3.46 |-3.46e+00 |-3.457
%- # zap |* |% |-3.46 |-3.46e+00 |-3.457
%- #0 zap |* % -3.46 |-3.46e+00 |-3.457
%-+ zap |* % -3.46 |-3.46e+00 |-3.457
%-+0 zap |* % -3.46 |-3.46e+00 }|-3.457
%-+# zap |* % -3.46 |-3.46e+00 }-3.457
%-+#0 zap |* % -3.46 |[-3.46e+00 |-3.457
%-+ zap |* % -3.46 |-3.46e+00 |-3.457
%-+ 0 zap |* % -3.46 |-3.46e+00 |-3.457
%-+ # zap |* % -3.46 |-3.46e+00 [-3.457
%-+ #0 |zap |* % -3.46 |-3.46e+00 |-3.457
- o e o o e o o e e

C Class #2 , 26 printf() formatting examples

Aligned output with printf()

You can produce columns

These statements
int d=42, h3=12168, 02=3344;

printf(" %d %d %d \n", d, h3, 02);

printf(" %d %d %d \n", h3, 02, d);

printf(" %d %d %d \n", 02, d, h3);
produce

42 12168 3344
12168 3344 42
3344 42 12168

while these
printf(" %6d %6d %6d \n", d, h3, 02);
printf(" %6d %6d %6d \n", h3, 02, d);
printf(" %6d %6d %6d \n", 02, d, h3);
produce

42 12168 3344
12168 3344 42
3344 42 12168

C Class #2 | 27 Aligned output with printf()

Aligned output with printf()

You can remove unneeded blanks

These statements

float pct = 0.255 ;
printf("Ha! %9.2f%% of your horses Tost!\n",pct*100.);

produce

Ha! 25.50% of your horses lost!

while these
float pct = 0.255 ; ‘ e
printf("Ha! %.2f%% of your horses lost!\n",pct*100.);
produce

Ha! 25.50% of your horses lost!

C Class #2 j | 28 Aligned output with printf()

Data conversion using printf()

The statement

printf (" %d, %x, %0, %d, %u\n",
511,511,511,-511,-511);

produces (on VM)
511, 1ff, 777, -511, 4294966785

and this statement

printf(" %c is ascii %d (%#x)\n",
ICI, ICI’ "c!);
produces

C is ascii 195 (0xc3)

C Class #2 29 Data conversion using printf()

scanf() differences

¢ Uses whitespace to separate input values.
e Expects ‘pointers’ to variables

— For basic data types, precede the name
with &

— For string variables, just use the variable
name

®* There is no %g option

* %f and %e are equivalent, both accept signs, .
digits, decimal points, and exponent ﬁelds o

¢ To read strings not delimited by whitespace, a
set of characters in brackets ([]) may be
substituted for the s(string) type character.
This causes the corresponding input field to
be read up to the first character that is not in
the bracketed set. If the first character in the
set is ‘A’, the effect is reversed.

C Class #2 30 scanf() differences

scanf() control string

The control string is a picture of the expected form
of the input. The contents of this string fall into
three categories: |

e Whitespace characters - a whitespace
character causes whitespace characters to be
read and discarded. The first input character
that is not a whitespace character will remain
as the first character to really be read into a
variable. A sequence of whitespace
characters acts just like a single one.

e Conversion specifications - a conversion
specification begins with a “%” and is
followed by one of the same conversion
identifiers used by printf (except %g). The
conversion operation processes characters
until either o

1. end of file is reached

2. a whitespace or other inappropriate
character is encountered,

3. the number of characters read equals the
explicitly specified maximum field width.

C Class #2 31 scanf() control string

scanf() control string

e Any other characters must match the next
character of the input stream. If it does not
match, the scanf() terminates and the

“conflicting input character remains in the input
stream. L

C Class #2 3 32 ~scanf() control string

scanf conversion modifiers

A conversion specification begins with the ‘%’ and
is followed by the following elements in the
following order:

1. an optional assignment suppression flag,
written as an . If this flag is present in a
specification that would otherwise cause an
assignment, then the input characters for that

~ assignment are read as usual, but no
assignment is done and no pointer variable is
used.

‘2. an optional maximum field width expressed as
~an integer

3. an optional size specification: ‘h’ indicating the
“argument is “short” variable; ‘I (lowercase L)
to indicate that the argument is long.

4. a required conversion operation, one of the
characters “cdeEfousxX%"”. |

C Class #2 33 scanf conversion modifiers

scanf() example

main()
{

~ char descr[80], partch[5], partnum[5];
int row, bin;

printf ("enter part number: ");
scanf ("%5["1234567890]", partch);
scanf ("%5[1234567890]", partnum);

printf ("enter part description & row-hin: ");
scanf ("%79s %d-%d", descr, &row, &bin);

printf ("\npartch=%s partnum=%s descr=%s row=%d bin=%d\n",
partch, partnum, descr, row, bin);

}
p234 _
enter part number: kmr4711

enter part description & row-bin: StraitJacket 35-016

partch=kmr partnum=4711 descr=StraitJacket row=35 hin=16

C Class #2 - 34 ~ scanf() example.

An Introduction to o
the C Programming Language

Class 3

September 19-20, 1988

Charles Palmer
- CPALMER at YKTVMZ
(CENET Course #lYT0040I)

T. J. Watson Research Center
Yorktown Heights, NY
“Internal Use Only

Outline

* Usual Operators
» Unusual, Very Specialized Operators
* Expressions & Statements

*» Automatic Conversions

CClass 73 | 1 - Oufline

Usual Operators

= assignment

— unary minus
+ — * standard operators

/ integer or floating point divide, dependlng
upon the types of the operands

() parentheses (aka ‘bananas’)

The usual (non-APL) precedence rules apply

CClass #3 2 Usual Operators

strcat(): version one

/* strcat(): version one */

main()

{
static int i = 0, j=0;
static char 1inel[40] = "Whether ";
static char 1ine2[12] = "'tis nobler";

printf("linel was '%s'\n", linel);
printf("line2 was '%s'\n", line2);

while (linel[i] != '\0')

{
i - i + 1; .
}
while (line2[j] != '\0')
A
linel[i] = 1ine2[j];
=1+ 1;
| i=3+1;
} ‘

lTinel[i] = line2[j];

printf("linel is now '%s'\n", linel);»
exit(0); '
}

p33

1inel was 'Whether '

1ine2 was ''tis nobler'

linel is now 'Whether 'tis nobler’

C Class #3 3 ’ Strcat(): version one

Integer vs. Float Division

/* integer .vs. float division */

main()

{

printf("integer division: 5/4 = %d\n", 5/4);

printf(" 6/3 = %d\n", 6/3);
printf(" 12/5 = %d\n\n",12/5);
printf("float division: 12./5. = %2.2f\n", 12./5.);
printf(" . 5./4. = %2.2f\n\n", 5./4.);
printf("mixed division: 5./4 = %2.2f\n", 5./4);
exit(0); :
}
p34
integer division: 5/4 =1
6/3 = 2
12/5 = 2
float division: 12./5. = 2.40
5./4. = 1.25
mixed division: 5./4 = 1.25

C Class #3 - 4 Integer .vs. Float Division

Modulus Operator

The % operator performs the modulo function.
That is, it divides its left operand by its right and
returns the remainder.

/* modulus operator */

main()

{

o
N

printf(" 5
printf(" 6
printf(" 12
Cprintf(" 2
exit(0);

o
o

N
N

[, RS) N O L R =
it

°\Q
0\0

p35

(5)]
N

12

N

N ()]

o N

g W
11

NN O -

%d\n", 5%4);
%d\n", 6%3);
%d\n", 12%5);
%d\n", 2%5);

C Class #3

Modulus Operator

Increment & Decrement
Operators

Very often a variable needs to be incremented or

decremented by 1 unit. These special operators
handle this quite well. There are two forms of
each: prefix and postfix.

+ +z Adds one to z BEFORE it is used (prefix).

——z Subtracts one from z BEFORE it is used
(prefix). - o

z+ + Adds one to z AFTER it is used (postfix).

z—— Subtracts one from z AFTER it is used
(postfix).

These operators have very high precedence; ‘onl‘y
parentheses are higher. So, x*y+ -+ means
(x)*(y+ +) and not (x*y)+ + which is
meaningless (to C anyway).

"C Class #3 6 FF and —— Operators

Increment & Decrement

Example

/* increment/decrement prefix.vs. postfix */

main()

{

static int a=
static float

-
It

printf(" a at++

printf(" a ++a

printf(" a++ ++a

o

0, b =
4.5, k
b b++\n%3d %3d %3d %3d\n\n",

a, a++, b, b++);

b++ b \n%3d %3d %3d %3d\n\n",
a, ++a, b++, b);

b++ ++b\n%3d %3d %3d %3d\n\n",
at++, ++a, b++,++b);

printf("a=%d, b=%d\n", a, b);

exit(0);

o

p37
a at+ b b+t
6 0 o0 0

a ++a b++ b
1 2 1 2

a++ ++a b++ ++b
2 4 2 4

a=4, b=4

C Class #3

7 Increment & Decrement Example

Operator Precedence (so far)

Operators (Hi—Lo priority) Grouping
() | LR
++ —— —(unary) | R-L
* [o LR
- L-R

Grouping describes how the operands of an -
operator are determined when precedence isn’t
enough. For example, the expression j*c%n is
treated as (j*c)%n due to the L-R grouping of both
operators. The other case is shown in the
expression a———b which would result in a—(—-b)..

C Class #3 8 Operator Precedence (so far)

W.D.T.P. #1

/* WDTP */

main()

{
static int this, that= 10, them = 5;

this = 4 * 6 + 12 % 4 / 3; printf("%d\n", this);
this = -4 / 6 + 12 - - 4; printf("%d\n", this);
this = that++ + ++them; printf("%d\n", this);
this = --that * them / ++them; .
printf("%d\n", this);

exit(0);

}

p39

24

16

16

8

C Class #3 9 W.D.T.P. #1

Bit-Fiddling Operators

~ One’s complement, or bitwise negation
& AND

| OR

A | Exclusive OR

<< Left shift

>> Right shift

C Class #3 | 10 Bit-Fiddling Operators

W.D.T.P. #2

/* WDTP */

main ()

{ ,
int claw, hoof, fin, root, toes; ,
claw = 3; hoof = 2; fin = 1; root = -1;

toes = claw | hoof & fin ; printf("%d\n", toes);
toes = claw | hoof & ~ fin ; printf("%d\n", toes);

claw ~ hoof & ~ fin ; printf("%d\n", toes);

toes =
toes = claw >> hoof | fin ; printf("%d\n", toes);
toes = fin << 3 ; printf("%d\n", toes);
toes = root << 3 | ; printf("%d\n", toes);

- toes = root >> 3 ' ; printf("%d\n", toes);
exit(0);

)

p311

3

3

1

1

8

-8

-1

C Class #3 1 W.D.T.P. #2

Assignment Operators

Op Use Effect

+ = at+ =b; a=a-tb;

-= a-=b; av = a-b;

= a=b; a=a'b;

/= ali'.—=b; a=aIB;

% = ’a%=bn; a=a%b;
I >>= a>>=b; a=a>>b;

<<= a<;<=b; a=a<<b;

&= a&=b; a=aé&b;

|= a|=b; a=alb;

A= an=b; a=a)\b;

C Class #3

12

Assignment Operators

W.D.T.P. #3

/* more operators */

main()

{
static int it, cu = 8, fe = 5, pb = 4;
it = cu % fe / pb ; printf("%d\n", it);
it += pb + 2; printf("%d\n", it);
it %= cut++ + --cu; printf("%d\n", it);
it >>= fe % 2; printf("%d\n", it);
it ~= ~cu | ~pb; printf("%d\n", it);
it /= ~(pb * pb % cu + 1); printf("%d\n", it);
exit(0);

}

p313

0

6

6

3

-4

2

C Class #3 13 T W.D.T.P. 73

sizeof and casts

sizeof

Yields the size, in bytes, of the operand to its
right. The operand can be a type-specifier
inside bananas, as in sizeof(float), or it can be

- the name of a particular variable or array, as
in sizeof shoe;

(type)
The cast operator: converts the following thing
to the type specified by the enclosed type
name. For example, (float) 42 converts the
integer 42 to the floating point number 42.0.

C Class /3 | 14 sizeof and casts

sizeof and casts

/* sizeof and casts */

main()
{
static int x = 4, heap[100],dog;
static char broiled[]
={lwl’lel’l'll’l'll,l ','d','O','n','e/'};)
static double bubble = 831.1956; |

printf("My int is %d bytes long.\n", sizeof(int));
printf("So, 100 of 'em take %d bytes.\n", sizeof heap);
printf("And the char array has %d bytes.\n", sizeof broiled);

dog = 1.987 + bubble;

printf("Auto dog = %d, ",dog);
dog = (int) 1.987 + (int) bubble;
printf("Cast dog = %d, ",dog);

-+

exit(0);
}

p315 : :

My int is 4 bytes long.

So, 100 of 'em take 400 hytes.
And the char array has 9 bytes.
Auto dog = 833, Cast dog = 832,

C Class #3 | 15 sizeof and casts

Operator Precedence (so far)

Operators (Hi—Lo priority) Grduping
Or] L-R
++ —— —(unary) (casf) éizeof R-L |
1% . L-R
+ — L-R
<< >> L-R

& L-R

A L-R

I LR
all assignhment ops R-L

C Class #3

16

Operator Precedence (so far)

Be Careful With Cleverness

e Don‘t use + + or —— operators on a variable
that is part of more than one argument of a
function.

e Don‘t use ++ or —— operators on a variable

that appears more than once in an expression.

~ /* Cleverness backfire example one */
main()

{

static int num = 0;

while(num < 4)

{ |
printf("%10d %10d\n", num, num*num++);
}
exit(0);
}
p317 /* CW */
1 2
2 6
3 12
4 20

p317 /* PC - MSC */

B WN =
O h=OoO

C Class #3 | 17 Be Careful With Cleverness

- Expressions & Statements

An expression consists of one or more operands
and zero or more operators. Examples of
expressions are:

42

-109

a*0777

x = flags >> 8 & 0xf0

A compound statement is two or more complete
statements grouped together by enclosing them in
braces, { & }. A compound statement can be
used anywhere that a simple statement can be.-

An important feature of expressions is that eVery
expression has a value. To find the value, perform
the operations in the expression. T

expression value
-4 -4
4+10 14
c=a+h at+h
6+ (c= 2*5) . 16
a=hb=c=96; 96

C Class #3 | R 18 Expressions & Statements

- Expressions & Statements

Because expressions always have a value, these
two programs produce the same results.

/* The hard way */
‘main()
{
static int num = 0, temp;
while(num < 20)
{
num++; /* or, num = num + 1 or num += 1; */
temp = num * num;
printf("%10d %10d\n", num, temp);

}
exit(0);

/* Use the value for an expression */
main()
{

static int num = 0, temp;

while(++num < 21)

printf("%10d %10d\n", num, (temp=num*num));
- exit(0);

} .

C Class #3 19 Expressions & Statements

Automatic Conversion

For arithmetic operations, the following sequence
of conversion rules are applied in order:

e char & short are converted to int, and float is
converted to double. |

* if either operand is double, the other is |
converted to double, and the result is double.

e Otherwise, if either operand is long, the other
is converted fo long and the result is long.

¢ Otherwise, if either operand is unsigned, the
other is converted to unsigned and the result
is unsigned.

e Otherwise, the operands must be int and the
result is int.

C Class #3 | 20 — Automatic Conversion

Automatic Conversion Example

/* automatic conversions */

main()

{

int eger; char actor; float ers;

“eger = ers = actor = 'Q';
printf("actor='%c', ers=%f, eger=%d\n",
actor, ers, eger);

++actor;

eger = ers + 2 * actor;

ers = 2.0 * actor + eger;

printf("actor='%c’', ers=%f, eger=%d\n",
actor, ers, eger):

actor = 2.123e4;
printf("actor= '%c'(%0x)\n", actor, actor);

exit(0);
}

p321 _

actor="Q', ers=216.000000, eger=216
actor='R', ers=1084.000000, eger=650
actor= '0O'(ee)

C Class #3 21 Automatic Conversion Example |

I i ‘
v
o . . :
,a i
! . . =
¢ . Bt L
;!)

. o

An Introduction to
the C Programming Language

"Class 4

~ September 19-20, 1988

Chérles'PaImer |
- CPALMER at YKTVMZ
(CENET Course #lYT0040I)

Yorktown Heights, NY
Internal Use Only

Outline

* Conditionai Statements (if-then-else)
» Relational Operators

* C Truth

« Logical Operators

| * Conditional Operator

C Class 74 1 — Outline

if Statement

¢ Typical decision statement

¢ Syntax

if (expression)
statement

¢ The expression is usually a relational one, but
any kind can be used.

¢ The statement can be a simple one or a
compound statement or block.

¢ Indentation is strongly recommended, but not
required.

e [f the expression evaluates to zero the
statement is NOT executed.

e If the expression evaluates to non-zero the
statement will be executed.

¢ The parentheses are required.

- C Class #4 2 | if Statement

if Statement

/* line & char counting program #1 */
#include <stdio.h>

main()
{
char ch;
int ccount = 0, lcount = 0;
while((ch = getchar()) != EOF)
{
++ccount;
if(ch == "\n')
++]count;
}

printf("The input consists of %d lines,", lcount);
printf("and %d chars.\n", ccount);
exit(0); :
'}

p43

this is[enter]

a test[enter]

this is[enter]

only a [enter]

test...[enter]

/*[enter]

The input consists of 5 lines, and 38 chars.

C Class #4 3 if Statement

if-else

e Syntax

if (expression)
statementl

else
statement2

* The expression is usually a relational one,‘b‘ut
any kind can be used.

e Either statement can be a simple one or a
compound statement or block.

* [ndentation is strongly recommended, but not
required. S -

¢ [f the expression evaluates to non-zero
statement1 will be executed.

e [f the expression evaluates to zero statement2
- will be executed. |

e As far as C is concerned, this if-élse pair is a
single statement and may be the object of a
for or while clause without enclosing braces.

C Class #4 4 if-else

if-else

/* line & char counting program #2 */
#include <stdio.h>

main()

{
char ch;
int ccount = 0, lcount = 0;
while((ch = getchar()) != EOF)
{ .

/* don't count newlines as chars */
if(ch == "\n')
++icount;
else
++ccount;

}

printf("The input consists of %d lines,", Tcount);
printf("and %d chars.\n", ccount), |
exit(0);

}

- pa5 :

this is[enter]

a test[enter]

this is[enter]

only a [enter]

test...[enter]

/*[enter]

The input consists of 5 lines, and 33 chars.

C Class #4 5 if-else

if-else is one statement!

#include <stdio.h>
main()
{

char ch;

puts(" Enter a mixed case line:\n");

while((ch=getchar()) f= "\n')“

/* { */
if(isupper(ch))
putchar(ch);
else
putchar('*'); ST
/* } */
}
pa6

Enter a mixed case line:
the Society To Abolish Basic

****S*******T**A*******B****

CClass #4 6 if-else is one statement!

Nested if’'s

Since if (expression) statement is itself a
statement, then it follows that we can use this
construct anywhere we need a statement, i.e. in
an if-else statement. |

/* line & char counting program #3 */
#include <stdio.h>

main()

{ .
char ch;
int ccount = 0, lcount = 0;
while((ch = getchar()) != EOF)

{ /* don't count blanks or newlines as chars */
if(ch == '\n') '
++]count; ,
else if (ch!="' ")
| ++ccount; |
} |
printf("The input consists of %d lines,", 1count) ;
printf("and %d chars.\n", ccount);
exit(0);
}

pa7

this is[enter]

a test[enter]

this is[enter]

only a [enter]

test...[enter]

/*[enter] | -

The input consists of 5 lines, and 29 chars.

CClass# 7 f' Nested if’s

if-else Pairing Rule

An else works with the most recent if unless
braces indicate otherwise. |

/* if-else pairing tester #1 */
#include <stdio.h>
main()
{
char ch;
printf(" Gimme a char: ");
if((ch = getchar()) != EOF)
if(ch > '2")
printf(" Off the end\n");
else | 7
if (ch >= 'A")
printf(" %c isa capital\n",ch); ..
else - AP RN
puts(" EOF detected\n");

puts(" byebye\n");
} X : B [

pas

Gimme a char: D
D isa capital
byebye

pa8

Gimme a char: 3
EOF detected
byebye

CClass #4 8 if-else Pairing Rule

Let’s try again

/* if-else pairing tester #2 */
#include <stdio.h>
main()
{
char ch;
printf(" Gimme a char: ");
if((ch = getchar()) != EOF)

{
if(ch > '2")
printf(" Off the end\n");
else ‘ |
if (ch >= 'A")
printf(" %c isa capital\n",ch);
}
else

puts(" EOF detected\n");

puts(" byebye\n");
}

- p49
Gimme a char: D
D isa capital
byebye

p49
Gimme a char: 3
byebye

p49

Gimme a char: ~Z
EOF detected
byebye

C Class #4 9 Let’s try again

Relational Operators

is less than

<

<= is less than or‘ equal to
== is equal to

>= is greater than or equal to
> is greater than‘

I= is not equal to

The relational operators associate left-to-right.

C Class #4 10 Relational Operators

Relational Operators

A Classic Error

Be very careful not to confuse the = = operator
with the = operator. The = = operator performs
equality comparison, while the = operator does |
simple assignment.

Statements like this

while (token = next_”one()')

{

are very common (and efficient) in C prbgrams,
but programmers must use the correct operator to
accomplish their goal. For example, the |
‘programmer could just as easily have meant to
only perform a test rather than an assignment:

while (token == next_one())

{

If the function next_one() happens to always return
a non-zero value, the first while will never fail its
condition! | | |

C Class #4 11 Relational Operators

Priority of Relational Operators

Their priority is less than that of + and — and
greater than that of assignment. |

pair < pile + bunch = pair < (pile + bunch)

(ch = getchar() != EOF) = (ch = (getchar() != EOF))
instead pf ((ch = getchar()) != EOF)

The relational operators themselves are grouped
into two levels of priority :

higher: < <= >= >
lower: == I=

So ...

bay <= boy == buoy (bay <= boy) == buoy
ch 1= EOF == TRUE = (ch != EOF) == TRUE

C Class #4 ' 12 Priority of Relational Operators

C Truth

A value used in a relational expression is treated
as "true” when that value is not zero.

As a result of this simple definition, you shouldn’t
depend upon the result of a relational expression
being ‘0’ or 1’; you can only be sure that it will |
be either "0’ or it won't.

main ()
{
- int a=4, b=2, c=4;

printf ("(a==b) evaluates to %d\n",(a==b));
printf ("(a==c) evaluates to %d\n",(a==c));

}

/* on some systems */
p413 o

(a==b) evaluates to 0
(a==c) evaluates to 1

/* on others */

p413 |
(a==b) evaluates to 0
(a==c) evaluates to -1 =

C Class #4 13 | - C Truth

C Truth Example

#include <stdio.h>

main()

{ |
static int johns = 9;
static char terr = 'F', ch;
if(johns) printf(" %d is true\n", johns);
if(terr) printf(" %d is true\n", terr);
if(NULL) printf(" %d is true\n", NULL);

if((ch = getchar()))
printf(" getchar returns true\n");
if(johns = (terr == 'F'))
printf(" multiple assignments can also\n");
if(johns -= '1') , J :
printf(" negative numbers (%d) are true\n",johns);
if(johns = terr = NULL)
printf(" multiple NULL assignments can ??2\n");
else ‘
printf(" multiple NULL assignments are false\n");

}
pala
9 is true
198 is true
A

getchar returns true

multiple assignments can also
negative numbers (-240) are true
multiple NULL assignments are false

C Class #4 14 C Truth Example

' Logical Operators

Logical operators allow you to combine two or
more relational expressions. -

&& and
»|| or
1 ~ not

exprl && expr2 is true iff both expr1 and expr2
are true:

5> 2 & 4 > 100 is false.

exprl || expr2 is true if either or both of expr1 and
exprz2 are true. | |

5>2]| 4>100 is true
lexpr1 is true if exprl is false and vice versa.

1(4>100) is true

C Class #4 15 Logical Operators

Priorities

The ! operator has a very high priority, above
multiplication, the same as increment operators,
and just below parentheses. The && operator
ranks higher than the || and both rank below the
relational operators and above assignment.

li>t&& c<hje-==
would be interpreted as

(((!1')>t)&&(c<h))ll(e==5)v

C Class #4 , 16 Priorities

Order of Evaluation

Standard C does not guarantee which parts of an
“expression will be evaluated first. So in the
statement ans = (a + 2) * (b - 2) you can not
depend upon (a + 2) being evaluated first. The
onl‘y exception to this rule is the way logical
operators are handled. Standard C does
guarantee that (1) logical operations are evaluated
from left to right, & (2) that as soon as a

~ sub-expression is found that will force the whole
expression to be false, the evaluation halts.

/* don't test an already known value */
while((ch = getchar()) i= EOF && ch i= '\n')

/* prevent division by zero */
if (denom 1= 0 &% numer/denom >= 60)) .

C Class #4 17 Order of Evaluation

Conditional Operator ?:

A'shorthand for if-else , the conditional operator is
~ a two-part operator that has three operands.

knit = (wit < 0) ? -wit « wit ;

Everything between the ‘=’ and the %’ is the
conditional expression. This statement can be
read “if wit is less than zero then assign -wit to
knit, otherwise assign wit to knit. 7

C Class #4 | 18 Conditional Operator ?:

Example

main()
{
-static int index=0;
static int list[24] = {0,1,2,3,4,5,6,7,.
| 8,9,10,11,12,13,14,15,
16,17

,18,19,20,21,22,23 };

while(index < (sizeof list / sizeof(int)))

{
printf("list[%02d] = %02d", index, list[index]);
printf("%s", (++index %3 2 ", " : "\n"));
} |
~exit(0);
} |
pal19

1ist[00] = 00, 1ist[01] = 01, 1ist[02] = 02
l1ist[03] = 03, 1ist[04] = 04, 1ist[05] = 05
list[06] = 06, 1ist[067] = 07, Tist[08] = 08
1ist[09] = 09, Tist[10] = 10, Tist[11] = 11
list[12] = 12, list[13] = 13, list[14] = 14
list[15] = 15, 1ist[16] = 16, Tist[17] = 17
‘list[18] = 18, Tist[19] = 19, 1ist[20] = 20
list[21] = 21, list[22] = 22, list[23] = 23

C Class #4 B 19 | Example

Operator Precedence (so far)

Qperators (Hi—Lo priority) Grouping
Or1 L-:R
++ —— —(unary) (cast) sizeof ~ RL
A L-R
¥+ _ L-R
<< >> L-R
< > <= >= L-R
== |= L-R
: "
A L-R
, }|__R‘ ,
&& L-R
I LR
?: R-L
all assignment ops R-L

C Class #4

20

Operator Precedence (so far)

_ ~An Introduction to
the C Programming Language

Class 5

September 13-20, 1988

'Charles PalmerA
- CPALMER at YKTVMZ
(CENET Course #lYT0040I)

T. J. Watson Research Center
Yorktown Heights, NY
Internal Use Only

Outline

* While loop

x for loop and the comma operator
~+ do while loop ‘

x break and continue
- x switch

*» goto (ugh!)

C Class #5 1 ’ | Outline

while Statement

¢ General form:

while(expression)
statement

¢ The expression in parentheses that follows the
while keyword is evaluated before the
statement is executed.

¢ The statement (compound statement) is
executed only if the expression evaluates to
be true (non-zero). Otherwise, the program
continues at the next statement.

¢ [f the statement is executed, the expression
within the parentheses will be evaluated again
and one of the above actions will be taken.

e Either the expression or the statement must
do something to cause the expression to
eventuaily evaluate to faise or the statement
must contain a break statement to terminate
the looping.

¢ The statement can be simple, compound, or
the null statement *;’.

C Class #5 " 2 while Statement

Example 1

#include <stdio.h>
/* skip leading whitespace & print first word */
main()

{
char ch;
printf("Enter a line\n");
while((ch = getchar()) == ' ' || |
ch == "\t' || ch == "\n") ;
putchar('\'');
putchar(ch) ;
while((ch = getchar()) != ' ' &&
: ch != '\t' && ch != "\n')
putchar(ch); ‘
printf("' was the first word.\n");
exit(0);
}
p53

Enter a line
, APL tends to be a 'write only' language.
"APL' was the first word.

p53

Enter a line

. Therewereseveral empty lines before this one.
'Therewereseveral' was the first word. |

C Class #5 3 | o Example 1

Example 2

#include <stdio.h>

main()

{ /* cute strien() */
static int len = 0;
char thing[100];

printf(" Gimme a string \n");
scanf("%s", thing); '

while(thing[len++]) ;

printf(" The length of '%s' is %d.\n", thing, --1en):
exit(0);
}

p54

Gimme a string

ThisStringHasThirty-nineCharactersInlt.

The Tength of 'ThisStringHasThirty-nineCharactersInIt.’ is 39.

CClass 45 2 Example 2

for Statement

¢ General form
for(initialize; exit-test; update)
statement

¢ The initialize expression is executed once,
before the statement is executed.

o |f the exit-test expression is true (non-zero) the
statement is then executed once. Otherwise,
“the statement is skipped.

e [If the statement was executed, then the
update expression is evaluated.

e The previous two stéps are repeated until the
evaluation of the exit-test expression becomes
false. | |

e Any of the three expressions within the
parentheses may be omitted.

¢ The statement can be simple, compound, or
the null statement *;’.

C Class #5 » | 5 | for Statement

Example 1

#include <stdio.h>

main()

{ /* strchr(), sort of */
char ch, pile[80];
int len, i, num;

printf(" Enter the string and the search char: ");
scanf("%s %c", pile, &ch); |

len = strlen(pile);

num = 0; '

for (i=0; i<len; ++i)
if (pile[i] == ch)

{
printf(" There is a %c at position %d\n", ch, i);
++num;
}
printf(" %d %c%s found in %s\n",
num, ch, (num==1 ? " was" : "'s were") p11e)

exit(0);

C Class #5 ' 6 Example 1

Example 1

p56 :
- Enter the string and the search char: thisisapile i
There is a i at position 2
There is a i at position 4
There is a i at position 8
-3 i's were found in thisisapile
P56 o
Enter the string and the search char: thisisapile p
There is a p at position 7
1 p was found in thisisapile
p56
Enter the string and the search char: thisisapile q
0 q's were found in thisisapile

C Class #5 7 Example 1

Example 2

#include <stdio.h>

main() =~ - L o .

{ /* slick character counter */
int i;
char ch;

for(i=0; (ch=getchar()) != EOF; ¥+i);

printf(" The input consisted of %d chars.\n", i);
exit(0);
}

p58 <p58.c
The input consisted of 193 chars.

C Class #5) 8 Example 2

Example 3

#include <stdio.h>

main()

{ /* obscure tab-expanding filter */
char ch;
static char exp[9] = " ",

| for(; ((ch=getchar()) != EOF); |
(ch=="\t' ? printf("%s",exp) : putchar(ch)));

}

p59 < p59.fil > p59.out
type p59.fil

15253+4-5

d»>d-d>s-a

52333"Z

type p59.out

1 2 3 4 5
d d d S ’ a
_5-, 333 '

C Class #5 9 ' - Example 3

Comma Operator

The comma operator can be used to allow more
than one initialization or update expression in a for
statement.

It can also be used to guarantee that the
expressions that it separates will be evaluated in a
left-to-right order. Without using the comma
operator, you can not be sure of the order in
which the expressions would be handied.

main()

{

int i, sum;

for(i=0, sum=i; i<100; sum += i, i++); |

printf("The sum of the ints 0 thru %d is %d\n",--i,sum);

exit(0);) |)
}

p510
The sum of the ints 0 thru 99 is 4950

However, commas in declaration statements and
in function argument lists are only separators.

C Class #5 ' 10 Comma Operator

Comma Operator

A handy side effect of this operator is that while it
separates two expressions and they are evaluated
left-to-right, the overall value of the whole
expression is the value of the last expression
evaluated. This feature can be used to produce
some pretty slick (and sometimes hard to
understand) statements.

For eXampIe, a programmer had built the following
statement to set the return code for a program:

rc = (error level > 10 2 2 : 1);
- When the specification changed, causing the

programmer to need to set an additional variable
- when rc was set to 2, this code resulted:

rc = (error_level > 10 ? emsg=5, 2 : 1);

C Class #5 | ‘ 1 Comma Operator

do while Statement

This statement is similar to the while statement
except that it is an exit-condition loop. That is, the
condition that eventually evaluates to false and
causes the termination of the loop is checked after
the statement(s) of the loop are executed. So the -
loop will always be executed at least once.

The general form is:
s

statement

while(expression);

C Class #5 ' 12 do while Statement

Example

main()
{ /* prompter */

char ch;

printf(" does 4096 x 4096 = 16772162\n");
do
{
printf(" answer with 'y' or 'n': ");
scanf("%c", &ch);
} while(ch != 'n' & ch != 'y');

if (ch == 'y') :
printf(" You're correct\n");
else |
printf(" You're wrong\n");
exit(0);
b
p513

does 4096 x 4096 = 16772167
answer with 'y' or 'n':

a[enter] |

answer with 'y' or 'n': answer with 'y' or 'n':
N[enter] I '
answer with 'y' or 'n': answer with 'y' or 'n':
n[enter]

You're wrong

C Class #5 , 13 Example

break Statement

This statement causes the program to break free
of the for, while, do while or switch, statement that
encloses it, and to continue at the next statement.

/* fragment to echo until EOF or '\n' */

while((ch = getchar()) != EOF)

{
if (ch == "\n')
break;
else
putchar(ch);
}

C Class #5 14 break Statement

continue Statement

This statement can be used with the loop
statements for, while, or do while only. Like
break, it interrupts the usual flow of the program.
Unlike break, instead of terminating the loop, the
continue statement causes the rest of an iteration
(pass) to be skipped and the next one to be
started. |

/* fragment to echo everything except '\n' until EOF */

while((ch = getchar()) != EOF)

{
if (ch == '\n")
continue;
else |
putchar(ch);
}

C Class #5 . 15 . - continue Statement

~switch & break Statements

If a program has to choose between several
alternatives one way to write the program is to use
a large if-else if-else if-else ... construction. A far
more convenient and clear way is to use the
switch and break statements provided by C.

The switch statement provides an orderly way to
arrange the alternatives as well as a default or
“catch-all” choice. It is similar to the case
statement of other languages.

The break statement causes the program to get
out of the switch construct and to continue at the
statement following the whole switch construct.

C Class #5 | 16 switch & break Statements

switch Example #1

#include <stdio.h>

main()

{

char ch;

printf(" Gimme the 1st Tetter of an instruction \n");
while((ch = getchar()) != EOF)
{ ,
if (ch !='"\n") SN
{
if (ch >= 'a’' & ch <= 'z')
switch(ch)
{
case 'a':
printf(" add instruction\n");
break; -
case 'j":
printf(" jmp instruction\n");
~ break;

“case 's': :
printf(" sub instruction\n");
break;

case 'c':
printf(" cmp instruction\n");
break;
default:
printf(" a,c,j, or s please\n");
break;
}
else ,
printf(" lower case only, please\n");

| printf(" Gimme another one\n");
}
}
printf("EOF detected\n");

}

C Class #5 | 17 switch Example #1

switch Example #1

p517

Gimme the 1st letter of an instruction
a

add instruction

Gimme another one

d

a,c,j, or s please
Gimme another one

J

lower case only, please
Gimme another one
J

jmp instruction

Gimme another one

~Z

EOF detected

C Class #5 - 18 switch Example #1

swiftch details

¢ The case values must be of integer type,
- including char, and can be either constants or

expressions.

¢ The expression within the parentheses must "
evaluate to an integer type, including char.

e The statements within each case, including the
break, are optional, allowing for groups of
cases to be treated the same.

e The default case is optional.

e The break statements are optional, but without
‘them the program will always execute all of
the following case’s statements up to the next
break or the end of the switch block.

C Class #5 19 switch details

switch Example #2

#include <stdio.h>
main()

{

char ch;

printf(" gimme a single digit number: ");
ch = getchar() | h
switch(ch)
B |
case '0':
case 'l':
case '5':
case '4':
case '8':
printf(" the word for %c has 2 different vowels\n",
ch);
case '2':
‘case '6':
printf(" the word for %c has no repeated Tetters\n",
| ch);
break;
case '3':
case '7':
case '9':
printf(" the word for %c has repeated letters\n"
ch);

C Class #5 . - 20 switch Example #2.

switch Example #2

p520
gimme a single digit number: 4
the word for 4 has 2 different vowels
the word for 4 has no repeated letters

p520
gimme a single digit number: 3
the word for 3 has repeated letters

p520
gimme a single digit number: A

C Class #5 21 | switch Example #2

The “Infinitely Abusable” goto

Although K&R suggest that it “be used sparingly, if
at all”, the goto statement is provided in C.
However, with the many control and looping
statements available in C, one has very few
justifiable needs for the goto statement.

The use of goto to completely escape from very
nested loops is usually not frowned upon, since
break only gets out of the innermost loop.

CClass #5 22 The “Infinitely Abusable” goto.

A tolerable goto use

#include <stdio.h>

main()

{
int i, j, k;

/* ce */ ‘
for(i=0; i<100; i++)
{
for(j=0; j<200; j++)
{ |
for(k=0; k<50; k++)
{
/* lots of processing */
if (self-destruct order given)
goto harikari '
, else ... ’
}
other statements ...

}

still other statements ...

}

a few more statements ...
exit(0);

harikari: printf("we, who are about to die, salute‘youf\n")
exit(42);

C Class #5 23 _ A tolerable goto use

An Introduction to
the C Programming Language

Class 6

September 19-20, 1988

Charles Palmer
'CPALMER at YKTVMZ
(CENET Course #lYT0040I)

Yorktown Heights, NY
Internal Use Only

Outline

*x Preprocessor directives
— Macros |
— File Inclusion
— Conditional Compilation

* Debugging Techniques

C Class #6 1 | —Outline

Preprocessor Directives

The preprocessor is the first part of the C
language processor that gets your source file.
There are several commands that can be put in a
source file to direct the preprocessor to do
different things.

* A line whose first character is ‘# is treated as
a preprocessor command. The name of the
command must follow the # immediately.
Most compilers also require that the # be the
first character on the line.

®* The rest of the line can contain arguments for
the command if needed.

¢ Within a preprocessor command line, if a
newline character is immediately preceded by
a ‘\’, then the newline and the ‘\’ are ignored
and the following line is treated as though it
was part of the original line.

C Class #6 2 Preprocessor Directives

Preprocessor Directives

e A side effect of the preprocessor is that all
comments are removed. |

¢ (C language processors provide a way to save
~ the output from the preprocessor for
- debugging purposes.

¢ The preprocessor does hot know C. It will
happily do whatever it is directed to do,
including the building of invalid statements
and the deletion of source code.

C Class #6 3 Preprocessor Directives

Preprocessor Directives

The K&R standard directives are:

#define
Define a preprocessor macro (constant)

#undef |
Remove a macro (constant) definition

#include
Insert text from another file

#if Conditionally include some text, based upon
the value of a constant expression

#ifdef
Conditionally include some text, based upon
whether a macro name is defined

Hifndef |
Conditionally include some text, with the test
being opposite of the one for #ifdef

#else
Alternatively include some text, if the
previous #if, #ifdef, or #ifndef test failed.

#endif
Terminate conditional text

C Class #6 S 4 ~ Preprocessor Directives

#Hdefine

e |t is used to define symbolic constants or
macros. Quite handy for “magic” numbers
like Pl or LINES PER PAGE.

e The name that is defined by this command is
traditionally in UPPERCASE to enhance
readibility and to accent the fact that the name
is from a #define.

e This command can appear anywhere in the
source file, and its definition holds from its
place of appearaice to the end of the file or
up to an associated #undef command.

e The value of a defined thing can be numbers,
expressions, subexpressions, ... anything you
want. S

e The syntax of the command does not require
an equal sign or any other special delimiter
character after the name or definition.. The
body of the definition starts with the first
non-blank following the name.

e The preprocessor does not know any C
keywords, so you can redefine them if you
choose to do so.

C Class #6 5 | #define

Hdefine Macros Without Args

There are two forms of this command, depending
upon whether or not a left parenthesis immediately
follows the name to be defined.

#define name sequente of tokens

A macro of defined this way takes no arguments.
It is invoked simply by mentioning its name.
However, macro replacement is never performed
within comments or constants. Here are some
examples: |

#define BLOCK SIZE 4096

#define ERRMSG1l "Extraneous brouhaha in input line"
#define PRNL putchar('\n')
#define BYTES_PER_REC 512

#define RECORDS PER BLOCK BLOCK SIZE/BYTES PER_REC

#define do "repeat"

C Class #6 6 #define Macros Without Args

H#define Macros Without Args

C language processors provide a way to define
preprocessor macros (without args) at compile
time using a compilation option. For example, to
tell the compiler on UNIX™ that the preprocessor
macro DEBUG: should be defined and set to 3 before
compiling the program buggy, the compile
command would be

cc -DDEBUG=3 buggy.c

C Class #6 7 #define Macros Without Args

#define Macros Without Args

Incorrect usage

Here are some examples that are valid, but will
probably cause some pain:
#define NUMBER_OF REPLIES = 5
#define PIPESIZE 42;
#define NEWLINE "\n"
count = NUMBER OF REPLIES;
X = PIPESIZE * radius;

printf("%c", NEWLINE);

would produce

count = = 5 3
X = 42; * radius;

pl‘intf(uo/pcu’n\n");

C Class #6 : T 8 #define Macros Without Args

When does substitution occur

Substitution doesn’t usually occur within quotes.
For example: |

/* example program */ -

#define HOOK 7!

main()

{ _
~printf(" A HOOK is a '%c' character\n", HOOK);

} .

p69

A HOOK is a '?' character

- K & R did not define exactly what should happen
to #defined names within quotes. There are some
language processors that always do substitution.

- Check your documentation to be sure.

The ANSI-C standard provides a way to force
substitution within quotes selectively.

C Class #6 9 When does substitution occur

#define Program Example

#define MINIMS INA_DRAM 60
#define DRAMS INA 0Z 8
#define 0ZS_INA_PINT 16
#define PINTS_INA QUART 2

main()

{
int quarts_ina_gallon = 4;
printf("Apothecary's Fluid Measures:\n");
printf("%d quarts/gallon\n", quarts_ina_gallon);
printf("%d pints/quart\n", PINTS_INA QUART);
printf("%d ounces/pint\n", 0ZS_INA PINT);
printf("%d drams/ounce\n", DRAMS INA 0Z);
printf("%d minims/dram\n", MINIMS INA DRAM);

printf("So, there are %d minims/gallon!\n",
(quarts_ina_gallon * PINTS INA QUART *
0ZS_INA PINT * DRAMS INA 0z * MINIMS INA DRAM))

exit(0);
}

p610

Apothecary's Fluid Measures

4 quarts/gallon

2 pints/quart

16 ounces/pint

8 drams/ounce

60 minims/dram

So, there are 61440 minims/gallon!

C Class #6 10 Hdefine Program Example

~ #define Macros With Args

The second form of this command allows for the
definition of a macro that accepts arguments.

#define name(argl,arg2,...,argn) sequence of tokens

¢ The left parenthesis must immediately follow
the macro name or it will be treated as part of
~ the definition. |

* The names of the arguments must be valid
identifiers, no two the same.

o Arguments names in the list do not have to be
used in the body of the macro.

e The macro is invoked by mentioning its name
immediately followed by a left parenthesis,
~ then the list of arguments separated by
' commas, followed by a right parenthesis.

e The argument list may be defined as empty,
but then the macro must be called with an
empty argument list.

C Class #6 11 #define Macros With Args

Macro Example Source

#include <stdio.h>
#define TRACE 1 .
#define NL putchar('\n') -

#define Skip2nb(p) while (*p == ' ') p++
#define Nextc(p) printf("-> nextc=<%c>.\n",*p)

#define Trcode(stmt) if (TRACE) stmt

#define IsUpCase(c) (('A'<=c && c<='I") l \
('d'<=c && c<='R") \
('S'<=c &% c<='Z")) ’

C Class #6 12 Macro Example Source

Macro Example Source

main()

{
int i = 0;
char string[80], *ptr;;
printf("Gimme a string");
NL;

scanf ("%s", string);

ptr = string;
Skip2nb(ptr); /* skip leading blanks */

for(; *ptr I= '\0'; ++ptr)

{
/* debugging statement */
Trcode(Nextc(ptr));
if(IsUpCase(*ptr))
: ++1
)

printf("There are %d uppercase chars in '%s'\n",
i, string);

exit(0); -

C Class #6 | 13 ~ Macro Example Source

Macro Example

Partial preprocessor output

main()

{
int i = 0;
char string[80]. *ptr;;

printf("Gimme a string");
(--((&_iob(:1:)))->cnt >=0 ? (*((& iob(:1:))
)-> ptr++ = ("\n")) :
_Flushbuf (("\n*), ((&iob(:1:)))))
scanf("%s", string); |

ptr = string;

while (* ptr =="'") ptr 4+ 3
for(; *ptr != '\0'; +ptr)
{ ,
-if (1) printf("-> nextc=<%c>.\n",* ptr) . H
if((("A'<= * ptr && * ptr <='I")||
('d'<= * ptr 8&& * ptr <='R’)II
('S'<= * ptr & * ptr <='2')))
++i g
}

printf("There are %d uppercase chars in '%s'\n",
i, string);
exit(0);

C Class #6 14 Macro Example

Macro Example

Program output
p614

Gimme a string

AbCDefgHIjk

->
->
->
->
->
->
->

>
->
->
->

nextc=<A>.
nextc=<bh>.
nextc=<C>.
nextc=<D>,
nextc=<e>,
nextc=<f>,
nextc=<g>.
nextc=<H>.
nextc=<I>,
nextc=<j>.
nextc=<k>.

There are 5 uppercase chars in 'AbCDefgHIjk'

C Class #6

15

Macro Example

Macro Pitfalls

* Don’t send expressions with side effects (i.e.
a- +) into macros unless you are sure of
what will happen.

#define Isdigit(n) ('0" <= (n) && (n) <= '9')
Isdigit(*p++); /* Watch out! */

¢ There can be no spaces in the macro name or
argument list. The preprocessor thinks the
macro body begins at the first space, so
anything after that is lumped into the
replacement string.

#define SUM(x, y) ((x) + (y)) /* Wrong!!! */

C Class #6 16 ' Macro Piffalls

Macro Pitfalls

e Use parentheses around each argument and
around the definition as a whole. This
ensures that the terms are grouped properly.
For example

#define SQUARE(Xx) x * x
answer = SQUARE(a+h) * 2;
expands to

answer = ath * ath * 2; /* Surprise! */

- o Macros cannot be expected to define other

- preprocessor commands. A line is treated as
a preprocessor command if and only if no
macro processing has taken place and it starts
with a #.

C Class #6 17 | Macro Pitfalls

File Inclusion

If you have a lot of constants that you use often, or
in several different source files, you can place the
#defines in a separate file and have that file
copied into each of the source files using #include.

When it recognizes an #include statement, the
preprocessor searches for another file with the
given name. If it is found, then the file is copied
into the current file in the place of the #include
statement.

C Class #6 18 File Inclusion

File Inclusion

The file to be included can be specified in two
ways: |

<fileid>
Which tells the preprocessor to look in the
places on the disk where system-related or
system-supplied include files are kept.

“fileid” |
Which tells the preprocessor to first look in
your own areas (i.e. current directory and/or
path) and then in the system-related places.

Under VM, these two forms are equivalent; the
standard CMS minidisk search order is always
used. |

C Class #6 19 i} " File Inclusion

#include example

/* copy in our constant file */
#include "mynums"

main()

{ :
printf("Hidden within the mynums.h file are: \n“); N
printf("#defines for PI = %d,\n", PI); B
printf(" for E = %d,\n", E);

= %d.\n", C);

printf(© and for C
} . .

type mynums.h

#definé PI 3.14159
#define E 2.151
#define C 2.997925E10

C Class #6 20 Hinclude example

Conditional Compilation

At times it may be necessary to have different
statements compiled in your program depending
upon certain situations. Since you would like to
minimize the changes that would have to be made
under the different circumstances, if would be
handy to keep all of the statements in the program
for all of the different situations and to be able to
select which bunches of statements to use.

An example of this is if your program needs to run
on a PC as well as on VM. The character sets are
quite different, so statements like:

#define Isupperc(c) (('A' <=c && c <= 'Z'))

would work fine on the PC, but as well on VM or
MVS. |

The #if preprocessor statement can help us out. It
expects a constant expression which will evaluate
to either zero or non-zero. If the value is
non-zero, then everything up to the next #else or
#endif will be compiled. If the value is zero, then
everything up to the next #else or #endif will be
ignored. | .

C Class #6 21 _Conditional Compilation

Conditional Compilation

So, one solution would be:

#if ('A'==0xcl)
#define ONTHEPIG 1
#define ONTHEPC 0 :
#define Isupper(c) (('A'<=c && c<='I") l \
. ('3'<=c && c<='R'") \
('S'<=c && c<='2"))

felse

fdefine ONTHEPIG 0

#define ONTHEPC 1

#define Isupper(c) (("A" <=c && c <= '2"))

#endif

main()

{ ‘ o
(ONTHEPC ? printf("on the PC") : printf("on VM"));

#if ONTHEPIG
/* do some vm-specific stuff */
system("EXEC QLUNCH");

#endif

}
p622

on the PC

CClass #6 | 22 Conditional Compilation

Conditional Compilation

Other uses

o Use #if 0 as a quick'way to comment out
some code.

e Use #undef followed by #define to change the
value of a magic number for different stages of

a program.

e Use #if to conditionally include other files, i.e.
a 8087 function .vs. a non-8087 function.

* You should be able to do this to find out
where you are: |

#define ONTHEPC ('A' == 0x41)

C Class #6 23 Conditional Compilation

Debugging Code #1

The preprocessor can be quite handy when
debugging some code.

#ifdef DEBUG o

#define DPRINTF(args) printf args

felse o
#define DPRINTF(args) /* do nothing */

#endif
DPRINTF(("index is now %#Bx\n“; index));

When the preprocessor variable DEBUG is defined,
the above statement will be changed by the
preprocessor to |

printf("index is now %#8x\n", index);

When the preprocessor variable is not defined, the
above statement will be changed by the
preprocessor to a ‘;’ which will be discarded by
the compiler. |

‘CClass #6 24 N Debugging Code #1

Debugging Code #2

If you want a trace of the path taken through a
certain bunch of code, you can use the
preprocessor’s builtin macros _ FILE_ and _ LINE_ .
These variables hold the current file’s name as a
quoted string and line number as an integer,
respectively. |

#include <stdio.h> - /* defines stdin, stdout, and stderr */

#ifdef DEBUG
#define DTRACE(var) fprintf(stderr, "%s:%d var = %d\n", \
__FILE_, __LINE_, var)
#else :
#define DTRACE(var) /* do nothing */
#endif
Note that these messages are being sent to stderr
 rather than stdout. This way, you can capture
your trace messages in a file through redirection
and still see your stdout messages on the screen

(or in a different file).

C Class #6 ' 25 - Debugging Code #2

‘ An Introduction to
the C Programming Language

Class 7

September 19-20, 1988

- Charles Palmer
CPALMER at YKTVMZ
(CENET Course #YT0040I)

T. J. Watéon Research Center
Yorktown Heights, NY
Internal Use Only

Outline

% Storage classes and scope

» First day discussion/chalk-talk

C Class &7 - i | Outiine

Local .vs. Global Variables

Variables are either local or global in their scope
depending upon where they are declared.

¢ |[f a variable declared within a function, it is a
local variable. Only the function that declared
it can access it directly. Most variables are
local.

¢ |f a variable is declared outside of any function
then it is a global variable. Any function
within the same source file has full access to
that variable without declaring anything.

int zimmers;

main()
{
printf("How many rooms do you need?\n ");
scanf("%d", &zimmers);
printf("Ok, that comes to %fDM\n", RoomCheck()):

}
#define ROOMRATE 43.00
#define TAXRATE 1.14
float RoomCheck() .
{
return(zimmers * ROOMRATE * TAXRATE);
}

C Class #7 2 Local .vs. Global Variables

Storage Class

In addition to a certain data type, each variable
has a storage class. The storage class is defined
by where the declaration is and what keyword, if

any, is used.
The storage class determines two things:

e It controls the variable’s scope, that is, which
functions have access to the variable.

¢ [t determines how long the varlable will
remain in memory. |
The four keywords used to describe storage
classes are:
e auto
e extern
o static

® register

C Class #7 | 3 | Storage Class

Automatic Variables

e By default, variables declared within a function
are automatic.

e Automatic variables have local scope, so only
the function in which they are defined can
access them.

~* An automatic variable comes into existence
each time the function which contains it is
called. When the function returns to its caller
its automatic variables disappear.

¢ Automatic variables other than arrays can
have initializers. The initial value is given to
the variable each time the containing function
is called. If no initial value is given, the
contents of the variable is undefined.

¢ Automatic arrays can NOT have initializers
and their values are undefined until explicitly
set by the program.

¢ The scope of an automatic variable is limited
by the block (the { } pair) which contains it.
For example, an automatic variable could be -
defined within the compound statement of a
while statement.

C Class #7 4 Automafic Variables

Examples

#define PI 3.14159
main()

{

auto int radius=10;
double circumf;

circumf = calc(0);

printf ("calc(0) returned circumf = %g\n",
circumf); '

circumf = calc(radius);

printf ("calc(%d) returned circumf = %g\n",
radius, circumf);

circumf = calc(0); '

printf ("calc(0) returned circumf = %g\n",

circumf) ;

}
double calc(r)
int r;
{
int radius = 5;
if (r > 0)
radius = r;

return PI*radius*radius;

}

p75

calc(0) returned circumf = 78.53975
calc(10) returned circumf = 314.159
calc(©) returned circumf = 78.53975

C Class #7 5 Examples

External Variables

e A variable defined outside of a function is
external. An external variable can also be
defined using the extern keyword.

* Tke explicit declarations of external variables
inside of functions may be omitted if the
original definitions occur in the same file and
before their use.

* An external variable exists thrOughoUt the
execution of the program. Since it is not tied
to any particular function, it does not come
and go with the invocation and exit of ahy
function.

* Any function in the program, whether it is |
defined within the same source file or not, can
access any external variable

* Any external variable may be given initializers
at its definition, including arrays.

C-Class #7 6 External Variables

Examples

double bubble = 1986.3;

main()

{
/* def of bubble: unnecessary but ok */

extern double bubble;

printf("In main, bubble = %g\n", bubble);

}
HisFun()
{
/* no need to declare bubble at all, since
we know about it here by default */
, printf("In HisFun, bubble = %g\n", bubble);
}
~=-=-=z-=-=-=- in a different file -=-=-=-=-=.=-=-
HerFun()
{ - o
/* If we don't declare it external here, but we do define
~it, we will get a new automatic variable allocated.
If we don't declare it at all, we will get an error! */
extern double bubble;
printf("In HerFun, bubble = %g\n", bubble);
'}

C Class #7 7 Examples

Static Variables

* These variables have the same scope as
automatic variables, however, they do not
vanish when the function or block is exitted.

¢ The values of static variables are
| remembered” across successive calls to the
function in which they are defi ned.

® These variables can be initialized and the
|n|t|aI|zat|on occurs at complle tlme

e Statis arrays can be initialized. In the
absence of initializers, C guarantees that static
arrays are initialized to zero.

® A variable can be declared static outside of a
function, thereby making it an external static
variable. Such a variable differs from a plain
old external variable in that the ordinary
external variable can be known to any function
defined in any file, while the external static
variable can only be used by functions defined
(1) within the same file and (2) below the
variable definition.

C Class #7 | 8 Static Variables

Example # 1

main()

{

int kount;

for(kount=0; kount < 3; ++kount)

{
printf("Here is pass number %d\n", kount);
CheckStat(); '
} .
}
CheckStat()
{
int goaway = 96;
static int passnumber = 0;
printf("goaway = %d, passnumber = %d\n",
goaway++, passnumber++);
}
p79

Here is pass number 0 :

it
D

goaway = 96, passnumber

Here is pass number 1 :
goaway = 96, passnumber =1
‘Here is pass number 2 : _
goaway = 96, passnumber = 2

C Class #7 | 9 Example # 1

Example # 2

italian is known to both
main() and LAfood(), but
cajun is only known to
LAFood(). italian could
be known to NYFood(),
NJFood().

It is impossible for
NJFood() to know about
creole and NYFood()'s
char italian hides the int
italian of Source file 1.

— Source file 1

int italian;
main()
{

B

static int cajun;
LAFood()

{
}

— Source‘ file 2

“ NYFood()
{

static int creole;
char italian;

NJFood()
{

- extern int italian;

}

C Class #7

10

Example # 2

Register Variables

Variables are usually stored in the standard
computer memory. Although fast, this memory is
not as fast as what is called register memory.
However, this latter type of memory is extremely
limited.

¢ [f you have a variable that will “fit” in one of
your machine’s registers and that is used
very heavily within a short function or block,
you can “recommend” to the compiler that it
should try to keep this variable in a register.

¢ You can not be guaranteed that this
- declaration will have any effect, since the
compiler will have to decide based upon how
many registers there are and how they can |
best be used. | |

¢ Their scope is local and their dUration is
temporary (just like automatic variables).

¢ You may not use the & operator on a
variable of type register.

e Arrays of register variables are allowed, but
seldom effective.

C Class #7 11 Register Variables

Example

/* sum(n) returns the sum of the first n integers as a long int */

Tong sum (n)
register int n;
{

register Tong int sum=0;

while (n<0)
sum += n++;
return sum;

}

C Class #7 T 12 | Example

An Introduction to
the C Programming Language

- Class 8

September 19-20, 1988

Charles Palmer
CPALMER at YKTVMZ
(CENET Course #IYT0040l)

T. J. Watson Research Center
Yorktown Heights, NY
Internal Use Only

Outline

* Writing your own functions
*x Local variables
% Call-by-value .vs. call-by-name

x Basic pointer use

C Class #8 1 | - Outline

Functions

The philosophy of C encourages a “toolbox”
approach to programming. Some of the
advantages to using a collection of tools, or
functions, are: | o

®* They help to prevent repetitious programming
both within a single program as well as across
several programs.

¢ They improve the modularity of a program,
making it easier to understand and maintain
and more portable.

¢ They can improve reliability by the fact that
smaller modules are easier to write and test.

C Class #8 2. Functions

Defining Functions

The syntax is exactly like that for main():

#include ... /* preprocessor stuff the function needs */

functionname (argl, ...) /* the name of the function */
/* followed by a possibly empty */
/* list of args */

declarations for args; /* declarations for opt1ona1 args */

{
/* optional Tocal variable declarations */

/* the body of the function */

return(optional return value); /* optional statement to */
/* send a return va]ue */

¢ Functions are NOT nested within one another.
Each function is defined completely separately.

¢ Functions can be in the same source file or in
a different file that is compiled separately.

C Class #8 3 Defining Functions

Local Variables

* All variables defined within the { } that
enclose a function are known only within that
function.

¢ Different functions can define local variables of
the same name.

main()

{ |
int isotope, weight;
char name[];

isglowing(weight);
}

isglowing(mass)
int mass;
{
int name;
float weight;

C Class #8 | 4 Local Variables

Example #1 - No Args

#include <stdio.h>
/* function with no args, returning nothing */

main()

{
int i;
char ch;

~ printf("Do you want a decimal to hex table?\n");
- showprompt () ;
if((ch = getchar()) == '"y')
dec2hex() ;

else _
printf(" Ok, never mind ...\n");

exit(0);
}
showprompt ()
{ |

printf("\nPlease enter 'y' for yes, or 'n' for no.\n");
}
dec2hex()
{

int i;

printf("\n.Dec..Hex. .Dec..Hex.\n");

for(i=0; i<16; ++i)

Cprintf(" %02d %02 %02d %02x\n",
i, i, (i+16), (i+16));

}

C Class #8 5 Example #1 - No Args

Example #1 - No Args

p85

Please enter 'y' for yes, or 'n' for no.

Do you want a decimal to hex table?

y[enter]

.Dec. .Hex. .Dec. .Hex.
00 00 16 10
01 o1 17 11
02 02 18 12
03 03 19 13
04 04 20 14
05 05 21 15
06 06 22 16
07 07 23 17
08 08 24 18
09 09 25 19
10 0a 26 1la
11 0b 27 1b
12 0c. 28 1c
13 od 29 1d
14 Oe 30 1le
15 of 31 1f

Example #1 - No Args

C Class #8

Functions with arguments

e Names for the arguments must be listed within
the parentheses following the function name,
separated by commas.

e Each argument must be declared following the
right parenthesis and before the opening {.

sendmsg(buffer, buflength)
char buffer[];
int buflength;

{

¢ The function can use and/or modify its
arguments just as though they were declared
as local variables.

C Class #8 | 7 Functions with arguments

Functions with arguments

* Only the value of each of the caller’'s
- arguments is passed to the called function in
the arguments. So if a function needs to
change the caller’s copy of the variable, the
caller must give the address of the variable to
the function (i.e. scanf()).

* The programmer must be sure that both the
number of arguments and the types of the
individual arguments agree both in the
function definition and all of the function
invocations. Programs like lint check this for
you. |

C Class #8 = 8 Functions with arguments

ANSI-C function declarations

The ANSI-C specification provides a means for
checking argument type consistency called
function prototypes. The function declaration
‘syntax is extended to include declarations of the
arguments. As an example of the use of this
feature, consider the following code fragment:

int n;
double rootn, sqrt();

rootn=sqrt(n);

While this code initially looks correct, it will
produce unpredictable results because the sqrt()
function expects to be passed an argument of type
double. Without the function prototype extension,
you would have to find this error yourself or by
using lint. |

C Class #8 9 ANSI-C function declarations |

ANSI-C function declarations

However, if we use a function prototype the
compiler can generate code to convert the integer
to a double.

int n; -
double rootn, sqrt(double);

rootn=sqrt(n);

The function definition also changes for
consistency:

sqrt (double z)
{

}

C Class #8 R 10 ANSI-C function declarations

Functions Returning a Value

The easiest way for a function to return
information back to its caller is for the function
itself to return a value.

e When a return statement is reached, thé
program goes back to where the function was
originally called. The syntax is: |

return ; /* return nothing */
return expression; /* return something */
return (expression); /* return something */

¢ [f the function has nothing to return to its
- caller, it can either simply “fall out the
bottom” or use the first form of the return
~ statement above. | '

¢ The function can send a value back to the
caller by using the second form above.
Whatever the expression evaluates to will be
sent back to the caller and will logically
replace the call of the function.

e The calling program can ignore the values that
functions return.

C Class #8 M Functions Returning a Value

~ Example #1

#include <stdio.h>

main()

{
char str[80];

printf("Enter any string\n");

scanf("%s", str); ”

printf("The string '%s' has %d characters.\n ",
, str, stlen(str));
}

st1en(rope)
char rope[];

{
int length;

for(Tength=0; rope[length]; ++1ength)
return (length);
}

p812 |

Enter any string

anystring[enter]

The string 'anystring' has 9 characters.

C Class #8 12 Example #1

Example #2

main()

{

static char prompt[] = "Gimme a mixed string\n";
char inputline[80];
int pos;

Giveprompt(prompt); /* assumes no value returned */
scanf("%s", inputline);
pos = FindPunct(inputline);

if (pos>=0)
printf("The first punctuation is character #%d.\n", pos);
else | |
printf("No punctuation was found.\n");
}
Giveprompt (stuff)
char stuff[];
{
printf("%s", stuff);
return; /* no return value */

C Class #8 | 13 - | Example #2

Example #2

FindPunct (pile)
char pile[1;
{

int pos, pun;

for(pos = 0, pun = -1; pun == -1 && p1le[pos] 1= 0; ++pos)
switch(pile[pos]) |

{ S ‘
case '.': case ';': case ',': case ':': case "?27: case '!':
pun=pos;
: break;
}
return(pun);
}
p813

Gimme a mixed string
asdbn.iirr?
The first punctuation is character #5.

C Class #8 14) Example #2

Functions other than type int

Functions must have the same type as the value
they return. Unless declared otherwise, functions
are assumed to be of type int. If a function is to
return another type, it must declared to do so
before its use in the calling function as well as in
the function definition. | |

C Class #8 15 Functions other than type int

Functions other than type int

#include <stdio.h>
main()

{

double frac(), fnum;

fnum = 3.1423423; o

printf("The fractional part of %g is %.8g \n",
fnum, frac(fnum));

printf("And the next char, in upper case, is '%c'\n",
GetUChar());

}

double frac(thing)
double thing;

{
return(thing - (int)thing);
}
char GetUChar()
{
char it;
printf("gimme a char\n");
it = toupper(getchar()) ;
return(it);
}
p816

The fractional part of 3.1423423 is 0.1423423
gimme a char
And the next char, in upper case, is 'P'

C Class #8 , o 16 Functions other than type int

Other than type int

If the function has a declared return type, then the
type of any expression appearing in a return
statement must be convertible to that type by

-~ assignment, and that conversion in fact happens
on return.

Any expression appearing in a return statement
will be converted to the function’s return type. For
example, in a function declared as returning type
int, the statement

return 42.174;

 is equivalent to
return (int) 42.174;

both of which are equivalent to

return 42;

C Class #8 17 Other than type int

Address Operator & and
Ivalues

The C language sends arguments to functions
using “call-by-value”. So the only way for a
function to modify one of its caller’s variables is for
that function to be given the address of that
variable.

e The address operator, & , when followed by a
variable name, gives the address of that
variable. For example, the expression

&house
is the address of the variable named house.

* The variable following the & must be an
Ivalue. An lvalue is an expression that refers
to an object in such a way that the object may
be altered as well as examined. You can
think of the ‘I’ as meaning that an Ivalue is
anything that can be on the left side of an
assignment operator.

C Class #8 18 & Operator and Ivalues

Example

main()

{
static char it = 'z’
static int bunch[5]

{1’ 3’ 5’ 7’ 9};

printf("it = '%c', &t = %d\n", it, &t);

printf("bunch[0] = %d, &bunch[0] = %d\n",
bunch[0], &bunch[0]);

%d, &bunch[3] = %d\n",
bunch[3], &bunch[3]);

printf("bunch[3]

}

p819

it = 'z', &it = 131232

bunch[0] = 1, &bunch[0]
- bunch[3] = 7, &bunch[3]

131480
131492

C Class #8 19 . Example

Pointers

e A pointer is simply a symbolic representatlon
of an address.

e When the & operator is used to determine the
address of a variakle fred, then the expressmn
&fred is a “pointer to fred”

e C provides pointer variables that can hold an
address just like a int variable can hold an
integer. If we give a particular pointer
variable the name fptr, then |

fptr = &fred; /* assigns fred s address to fptr */
Now, fptr is said to point to fred.

¢ The difference between fpir and &fred if that
the former is a variable and the latter is a
constant.

e A single pointer variable can be set and reset
to any address.

C Class #8 20 “Pointers

Declaring Pointers

For any type T, a pointer type pointer to T can be
used. A value of a pointer type is an address of
an object of type T. The declaration syntax is

type *var;

where type is a C datatype and var is a variable
name. So, for example, to declare a variable ip to
be a pointer to int and another, cp to be a pointer
to char, we could use something like:

int *ip;

char *cp;
Yes, the * symbol is the same one used for
multiplication. It is used both to declare pointers
as well as in their use. |

C Class #8 21 Declaring Pointers

The Indirection Operator *

® The indirection operator, * , when followed by
a pointer, fetches the value stored at the
pointed-to address. This is called
de-referencing the pointer.

e When de-referencing a pointer, the size (type)
of the value fetched depends upon the
datatype of the pointer.

¢ |f we know that a pointer-to-int variable finger
points to the int variable nose, then the
indirection operator can be used to find the
value of what is stored at nose.

int nose, schnozz, *finger;

nose = 109; /* value of nose */
finger = &nose; /* pointer to nose */
~schnozz = *finger; /* assign to schnozz the value of

what finger points to (nose) */

CClass #8 22 The Indirection Operator *

Using The & and * Operators

main()

{
char eye;
char jay;

]
-
e
-
L]

eye
jay

1t
[
. -

printf("Before the swap, eye='%c', jay='%c'.\n",
| eye,jay);
swap(&eye, &jay);

printf("After the swap, eye='%c', jay='%c'.\n",
eye,jay);

swap(a, b)
char *a, *b;
{

char temp;

temp = *a;
*a = *h;
*h = temp;

}

p823 .
Before the swap, eye='i', jay='j'.
After the swap, eye='j', jay='i'.

C Class #8 23 Using The & and * Operators

An Introduction to
the C Programming Language

Class 9

September 19-20, 1988

Charles Palmer
CPALMER at YKTVMZ
(CENET Course #lYT0040I)

T. Jd. Watson Research Center
Yorktown Heights, NY
Internal Use Only

Outline

e More about arrays
e All about pointers to everything

e Multi-dimensional arrays

C Ciass #9 | 1 Outline

Arrays and Pointers

Since an array name is actually the beginning
address of the consecutive memory locations
making up the array, we can think of array names
as a sort of pointer variable.

int bunch[] = {1, 2, 3, 4, 5)};

if(bunch == 8hunch[8]) printf("YESI");

Both bunch and &bunch[0] are constants which can
be assigned to variables, but they themselves can
not be changed.

However, do not forget that the * operator binds
more tightly than most others. So *bunch + 2 is
two added to the value of the first element of the
array, while *(bunch + 2) refers to the value of the
third element of the array.

So, it follows that all arrays and their elements can
be accessed through pointers and this is in fact
the way C compilers manage arrays.

C Class #9 2 Arrays and Pointers

Arrays and Pointers

/* A program to calculate the total number of days */
/* of the year that have passed at the end of each */
~/* month (in a non-leap year). * [

main()

{ _
static int days[] = {31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31};
int daysofar[12], i;

int *daysptr, *sofarptr;

days;
&daysofar[0];

daysptr
sofarptr

for(i=0; i<sizeof days/(sizeof (int)); ++i)

A o

if (i == 0) _
*sofarptr++ = *daysptr++ ;

else '
*sofarptr++ = *daysptr++ + daysofar[i-1];

printf("month %2d has %2d days, %3d days so far\n",
(i + 1), days[i], daysofar[i]);

} : .

C Class #9 3 Arrays and Pointers

Arrays and Pointers

p93

month 1
month 2
month 3
month 4
month 5
month 6
month 7
month 8
month 9
month 10
month 11
month 12

hés_

has
has
has
has
has
has
has
has
has
has
has

31
28
31
30
31
30
31
31
30
31
30
31

days,

days,
days,
days,
days,
days,
days,
days,
days,
days,
days,
days,

31
59
90

120

151

181

212
243
273
304
334
365

days
days
days
days

days

days

days

days
days
days
days
days

SO
SO

S0
SO
SO’
SO

SO
SO
SO
SO
SO
SO

far

far

far
far
far
far
far
far
far
far
far
far

C Class #9

Arrays and Pointers

Passing Arrays to Functions

When a function is called that needs an array as
its argument, the name of the array is used.
Therefore, we are passing the address of the array
to the function, rather than copying the whole
array into a storage location that is local to the
called function.

Because of this, functions called with array
arguments can declare their formal parameters
either as arrays of unknown length or as pointers
to an item of the data type of the array.

C Class #9 5 Passing Arrays to Functions

| Passing Arrays to Functions

#define SIZE 5
main ()

{ |
static int scores[SIZE]

{80,90,30,92,88};

printf("high = %d, low = %d.\n", high(scores), low(scores));

}
high(1list)
int list[];
{ .
int i, high;
for(i=0, high=0; i<SIZE; ++i) .
if (list[i] > high) high = list[il;
return(high); ' o
}
Tow(1list)
int *list;
{
int i, low;
for(i=0, Tow=101; i<SIZE; ++i)
if (list[i] < Tow) 1low = list[i];
return(low);
}
p96

high = 92, Tow = 30.

C Class #9 | [Passing Arrays to Functions

Passing Arrays to Functions

The same program can be written without any
array-like references other than the declarations.
This convenience is due to the fact that arrays are
actually implemented as pointers.

In general, any declaration of an array results in
the compiler producing a pointer variable with the
declared name and type, and setting its value to
the beginning address of the allocated space.
However, this pointer variable isn’t variable at all -
it is an “address constant”.

Array names can be best thought of as just
numbers that can be conveniently used as
~ pointers.

Similarly, but unportably, statements iike

if (*(0x005cL << 4)) |
/* the interrupt vector is defined */

can be used to Iook directly into storage at
- predefined or “magic” memory locations.

C Class #9 7 Passing Arrays to Functions

‘Passing Arrays to Functions

#define SIZE 5

main()

{

static int scores[SIZE] = {80,90,30,92,88);

printf("high = %d, low = %d.\n", high(scores), low(scores));

},
high(1ist)
int *1ist;
{
int i, high;
for(i=0, high=0; i<SIZE; ++i) |
if (*(1ist+i) > high) high = *(list+i);
return(high);
} ‘
Tow(1list)
~int *1ist;
{
int i, low;
for(i=0, low=101; i<SIZE; ++i) |
if (*(list+i) < low) Tow = *(list+i);
return(low) ;
y
po98

high = 92, Tow = 30.

C Class #9 8 Passing Arrays to Functions

strcpy() Uses Pointers

The strcpy() function uses pointers in registers to
quickly copy strings and also gives its first
argument as it’s return value.

strcpy (1eft,right)
register char *left, *right;

{
char *leftstart;

for(leftstart=left; *left++ = *right++;);

return leftstart;

C Class #9 9 strcpy() Uses Pointers

Pointer Operations

There are five basic ,6perations that can be
performed on pointers.

1. Assignment : assigning a particular address to
a pointer.

2. Value-finding : finding the value of what a
pointer points to, i.e. dereferencing.

3. Take a pointer address : Since the pointer
itself is a variable we can find out the address
of the pointer.

4. Increment & decrement : These operations
add or subtract from the pointer the size of
the kind of element to which the pointer
points.

5. Differencing : The difference between two
pointers can be determined, with the results
being in the same units as the type size.

CClass #9 , 10 Pointer Operations

Pointer Operations Example 1

main()

{
static int bag[] = {1, 3, 9, 16, 25};
int *ptrl, *ptr2;

ptrl

bag + 1; /* assignments */
ptr2 e

&bag[4];

printf ("ptrl=%u, *ptrl%d, &ptrl=%u\n", ptrl, *ptrl, &ptrl);
/* move over */ ,
+ptrl;

printf ("ptrl=%u, *ptrl%d, &ptri=%u\n", ptrl, *ptrl, &ptrl);
/* back up */

--ptril; '

printf ("ptrl=%u, *ptrl%d, &ptrl=%u\n", ptrl, *ptrl, &ptrl);

printf ("ptr2=%u, *ptr2%d, &ptr2=%u\n", ptr2, *ptr2, &ptr2);
/* past the end */ |
ptr2++; _ :
printf ("ptr2=%u, *ptr2%d, &ptr2=%u\n", ptr2, *ptr2, &ptr2);

/* find the difference, in units of sizeof(int) */
printf("ptr2-ptrl = %u\n", ptr2-ptrl);
} .

p911 |

ptrl=244, *ptrl=3, &ptrl=3616
ptrl=246, *ptrl=9, &ptrl=3616
ptrl=244, *ptrl=3, &ptrl=3616
ptr2=250, *ptr2=25, &ptr2=3614
ptr2=252, *ptr2=1926, &ptr2=3614
ptr2-ptrl = 4

C Class #9 | M Pointer Operations Example 1

Pointer Operations Example 2

main()

{

static char name[4]="EVE"; ‘
static int dates[2]={1981,1962}, height=65, *intptr;
static float weight_in_grams
char *nameptr, *endnameptr, **ptrnameptr,
float *weightptr; -

nameptr

= &name[0] ;

2.42506E5;

endnameptr = nameptr+strien(nameptr);

intptr =
weightptr = &weight_in_grams;

dates;

ptrnameptr = &nameptr;

printf

printf

printf
pr1ntf

pr1ntf
printf

}
p912

name=100,

" name=%d, name=>'%s'\n", name, name);
(ll nameptr:%d, nameptr=>|o/os [] \nll g L

nameptr, nameptr);

(" ptrnameptr=%d, *ptrnameptr=%d, **ptrnameptr=%d\n",
ptrnameptr, *ptrnameptr, **ptrnameptr); |

(" weight_in_grams=%g, weightptr=%d, "
*weightptr, weightptr);

(" ++weightptr = %d\n",

++weightptr) ;

(" 1ntptr-/d, 1ntptr->/d\n", intptr, *1ntptr),
++intptr;
printf (" intptr=%d, intptr=>%d\n", intptr, *1ntptr)

name=>'EVE'

nameptr=100, nameptr=>'EVE'

ptrnameptr=108,

*ptrnameptr=100,

**ptrnameptr=197

weight_in_grams=242506, weightptr=112, ++weightptr = 120 |
intptr=104, intptr=>1981
intptr=106, intptr=>1962

C Class #9

12

Pointer Operations Example 2

Pointer Operations Example 2

Memory layout

100 101 102 103 104 . 105 106 107

E v E 000 1981 1962

name dates

18 109 110 111 112 113 114 115

100 65 2.42506E5

~ nameptr height weight_in_grams

116 117 118 119 120 121 122 123

112 103 108 104

-weightptr endnameptr ptrnameptr intptr

C Class #9 13 Pointer Operations Example 2

Multi-dimensional Arrays

In C, arrays of many dimensions are stored in
row-column order. This means that the right-most
index varies the fastest as you move through the
memory of the array.

Pointers can be used with arrays of any
dimension, but they access the array as though |t
was a long vector, or singly-dimensioned array.

C C]éss #9 ‘ } 14 Multi-dimensional Arrays

Multi-dimensional Arrays

Example 1
int fingers [2][5] = { {1,2,3,4,5},{6,7,8,9,10} };
main ()
{
, int *p;
int i,j;

for(i=0; i<2; i++)

{
for(j=0; j<5; j++) -
printf ("fingers[%d] [%d] = %d\n",
i, j, fingers[i][il);
printf ("\n");
'}

for(p = fingers; . | '
p<(&fingers[0] [0] + sizeof fingers / sizeof(int));

+p)

printf ("p=%u, *p=%2d, &p=%u\n", p, *p, &p);

C Class #9 ' 15 Multi-dimensional Arrays

Multi-dimensional Arrays

Example 1 results

fingers[0] [0]
fingers[0] [1]
fingers[o] [2]
fingers[0] [3]
fingers[0] [4] =

n
OB W N

fingers[1][0] = 6
fingers[1][1] =7
fingers[1][2] = 8
fingers[1][3] = 9
fingers[1][4] = 1

0
=]
] :
w -
(%)]
(<]
=

p=124, *p=
p=126, *p=
p=128, *p=
p=130, *p=
p=132, *p=
p=134, *p=
p=136, *p=
p=138, *p=
p=140, *p=
p=142,

20 Qo Qo Qo
o T T T
noanonn
W W W W
g g1 g1 3
T I~
e

O VWO NI WNR
o Qo @o
T T T
nou o
w W W
g1 g1 A
[~ I
o e

*
o
fl
-
2o
o
[
w
(5,
(=]
s

CClass #9 | 16 Multi-dimensional Arrays

Multi-dimensional Arrays

If fingers is the name of our two-dimensional array,
can we refer to the individual rows as distinct
vectors? | | -

Since multi-dimensional arrays are actually “arrays
of arrays of ...”, a convenient representation of
them is to have the first index be a displacement
into an array of pointers. These pointers, in turn,
point to an array of the next dimension’s elements
which will either be actual elements, in the case of
two dimensions, or another array of pointers for
‘higher dimensions.

So, if we want to access a given row of a
two-dimensional array as though it was a separate
‘array, we can do this by using only the first

subscript to obtain a pointer to the beginning of

that row. | |

C Class #9 17 Multi-dimensional Arrays

Multi-dimensional Arrays

Memory Iayout for array[4] [3]

2nd index
[o]
0
1
1st index
0|l o 2
1 0
2nd index
o [1]
‘ >
9 N ~
4 : ‘ | 0
3 0 . ’
. 1
. 2

CClass# 18 Mulfi-dimensional Arrays

Multi-dimensional Arrays

Example 2

/* fingers is a 2 element array of pointers to int */
int fingers [2][5] = { {1,2,3,4,5},{6,7,8,9,10} };

main()

{ |

int *p;

int i;

printf("fingers[0]=%u, *fingers[0]=%d, &fingers[0]=%u\n",

fingers[0],*fingers[06],&fingers[0]);

p = fingers[1];

printf("Here is the second row: ");

for(i=0; i<5; ++i) o

printf("%d%c", *(p+i), (i<4 2 '," : '\n'));

} | | |
p919 -
fingers[0]=158, *fingers[0]=1, &fingers[0]=158
Here is the second row: 6,7,8,9,10
Note that p = fingers[1] is valid since both sides
are of type “pointer to int”, whereas p = fingers
would cause an error because p is type “pointer to
integer” and finger is is type “array of pointers to
integers”.

C Class #9 ,' 19 “Mulfi-dimensional Arrays

Functio'ns & Multi-dimensio'nal
- Arrays

To pass multi-dimensional arrays as arguments to
functions, the receiving function must know (1) that
’t is getting an array, and (2) how to break up the
array into dimensions. -

Because of this, the function must specify the last
n-1 of the n dimensions of the passed array.

C Class #9 T 20 Functions & n-dimensional arrays

Functions & Multi-dimensional

Arrays

Example

main

{

0

double avg row();
int i;

for(i=0; i<5; ++i) |
~printf("the average for row %d is %f\n",

} .

double avg row(arr,n)
int arr[] [4]:
int n;

R

int i, ans;
for(i=0, ans=0; i<4; ++i)
ans += arr[n][il;
return ((double)ans / 4.0);

}

p921
the
the
the
the
the

average
average
average
average
average

for
for
for
for
for

row 0
row 1
row 2
row 3
row 4

static int junk[5][4] = { {1,2,3,4}, {5.6,7,8}, {9,10,11,12},

{13,14,15,16}, {17,18,19,20} };

i, avg_row(junk,i));

is 2.500000
is 6.500000
is 10.500000
is 14.500000
is 18.500000

C Class

#9

21 Functions & n-.dimensiOnal arrays

Py R

| An Introduction to
the C Programming Language

CIaSS 10

September 19-20, 1988

Charles Palmer |
CPALMER at YKTVMZ
(CENET Course #YT0040I)

T. J. Watson Research Center
Yorktown Heights, NY
Internal Use Only

Outline

» Character strings and pointers
* String-oriented 1/0
* Standard string functions

* Command-line arguments

C Class #10 1) Outline

Character Strings

A character string is simply an ar'ray. of type char
that has at least one element set to ‘\0".
Character strings can be defined in several ways:

® string constants

® char arrays

® char pointers

* arrays of character strings

C Class #1 0 2 | Character Strings

string constants

Whenever the language processor runs into
something contained within double quotes, that
something is recognized as a string constant.

The enclosed characters, with a ‘\0’ always
added to the end, are stored in adjacent
memory locations |

To get a double quote character in’a string, it
should be preceded with a backslash.

Character string constants are placed in
storage class static.

The whole quoted string acts as a pointer to
where the string is really stored. |

The string constant can be used as though it
was a variable, in that its contents can be
changed using pointers. However, if you need
a variable you should use a variable to to
enhance maintainability.

C Class #10 | 3 string constants

string constants example

main()

{

printf("This is a character string\n");
printf("As is this \"%s\"\n", "Hi there!");
printf("There are many ways to use a string constant\n");
printf(" %s, %u, %c\n" , "bananas", "are", *"hairy");
}
pl04
This is a character string
As is this "Hi there!"

There are many ways to use a string constant
bananas, 186, h

C Class #10 4 string constants example

Character Arrays

We can define an array of type char and use it as
a character string.

The compiler must know how big the array is, so it
must either be explicitly stated, or it can be

~ initialized with a string constant rather than using
the standard array initialization form (remember
that only static or extern/global arrays can be
initialized).

"userid";

char easy[] ‘ |
{ lul’llsl,lel’lrl’lil’lydl’l\OI };

char hard[] =
In the first example, the trailing null is generated
automatically by the string constant. In the
second, the trailing null must be explicitly given.
The first method is nearly always preferred for its
ease of understanding and maintenance.

C Class #10 5 Character Arrays

Character Arrays

If the storage for an array is given, the array can
still be initialized using either of the above
methods. However, keep these two points in
mind: |

e The number of elements in the array must be
at least one more than the number of |
characters in the initialization string.

e As in other static or external/global variables,
any uninitialized elements are automatically
initialized to “\0’. |)

C Class #10 6 Character Arrays

‘Character Pointers

If a character array has been defined and there is
at least one null character in it, then the whole
thing can be treated as a character string. If only
“a part of this string is wanted, a pointer can be set
" to some arbitrary position within the array. As
long as there is a null eventually following it, that
pointer is “a pointer to a character string”.

C Class #10 , 7 Character Pointers

Character Pointers Example

V) Hp

#define Skip2nb(p) while(*p .
voro2R *p = I\GI) ++p

#define Skip2ws(p) while(*p !

main()
static char junk[] = "This is a sentence...";
char *csp, *nsp; o

csp = junk;
while(*csp != '\0')

{
Skip2nb(csp);
nsp = csp;
Skip2ws (nsp) ;
if(*nsp == "\0')
break;
*nsp = '\0'; . |
printf("the next word is \"%s\"\n", csp);
csp = nsp + 1; :
}
printf("the last word is \"%s\"\n", csp);
y
plo8

the next word is "This"

the next word is "is"

the next word is "a"

the last word is "sentence..."

C Class #10 | 8 Character Pointers Example

How not to copy strings

Strings can NOT be copied by simple assignment.
A loop of some sort must be used.

main()

{

static char *wmsg = "Be careful, fatfingers!";
~static char *wptr;

wptr = wmsg;
printf("string is \"%s\"\n", wptr);

printf("wmsg=%s, value=%u, &wmsg=%u\n",wmsg,wmsg,&wmsg) ;
printf("wptr=%s, value=%u, &wptr=%u\n",wptr,wptr,&wptr);

}

p169 - |
string is "Be careful, fatfingers!"

wmsg=Be careful, fatfingers!, value=80, &wmsg=178
wptr=Be careful, fatfingers!, value=80, &wptr=636

C Class #10 - 9 How not to copy strings

Arrays of Character Strings

Many times it is convenient to collect a number of
character strings together in an array. We can
either (1) define a 1-D array of pointers to
character string constants, or (2) define a 2-D char
array with fixed dimensions.

The first of these choices makes better use of
memory because it allocates just the right amount
of memory to hold the characters. The second
choice will waste memory for other than the
longest strings. |

~CClass #10 10 Arrays of Character Strings

Arrays of Character Strings

main()
{ |
static char *errmsgsl[5] =
{ "Extraneous brouhaha in input line",

"Silly operator usage suspected”,

"Undefined variable, stupid",

"So what is this?",

"Surely you must be joking?" };

static char errmsgs2[5] [10] =
{ "Garbage", "Silly Op", "??? Var",
"whatisit?", "snicker!" };

int i3
for(i=0; i<sizeof errmsgsl / (sizeof (char *)); i++)
printf("msg=\"%s\", len=%d\n",. |
errmsgs1[i], strlen(errmsgsl[i]));
printf("\n");
for(i=0; i<sizeof errmsgs2 / (sizeof (errmsgs2[0])); ++i)

printf("msg=\"%s\", len=%d\n",
errmsgs2[i], sizeof errmsgs2[i]);

C Class #10 11 Arrays of Character Strings

Arrays of Character Strings

ploll

msg="Extraneous brouhaha in input line", len=33
msg="Silly operator usage suspected", len=30
msg="Undefined variable, stupid", len=26
msg="So what is this?", len=16

msg="Surely you must be joking?", len=26
msg="Garbage", 1en=10

msg="Silly Op", len=10

msg="??? Var", len=10

msg="whatisit?”, len=10

msg="snicker!", len=10

C Class #10 T 12 ~Arrays of Character Strings

String-Oriented 1/0

To accept a string as input, two things must be
done:

e space must be aIIodated for the string
e an input function must fetch the string.

You can not expect the program to allocate space
for the input “on the fly”. The space must be itself
an array of char. The following declaration and
input will not work |

char *name;
scanf("%s", name);

This declares a char pointer, possibly initializes it
" to zero, accepts an input string, and happily stores
it at memory location zero! The following code
would allocate the string space and produce the
desired results. | |

char name[81];

scanf("%80s", name);

C Class #10 — 3 String-Oriented /0

gets()

The gets() library function is available on most
systems. It gets characters from stdin until it finds
a newline (\n’) or EOF, and returns all of them ,
appended with a null (\0°) at the address it was
given.

main()

{

char name[81];

printf("Enter the author's name:");
gets(name) ;
printf("Searching for author = '%s'\n", name);

}

The function also returns a char pointer set to the
address of its argument, which can be used or
ignored. | |

main()

{

char name[81], *nameptr, *gets();

printf("Enter the author's name:");
nameptr = gets(name); '
printf("Searching for author = '%s'\n", nameptr);

C Class #10 14 ‘ gets()

A stdin line echo program

main()

{
char line[81], *gets();

while(gets(line) != '\0')
printf("'%s'\n", line);
printf("(EOF)\n");
}

pl0l5 <pl015.c
'main()"’
" |
' char 1ine[81], *gets();'
v while(gets(line) != '\0')’

' printf("'%s'\n", line);'
' printf("(EOF)\n");'

l}l .

(EOF)

C Class #10 15 A stdin line echo program

puts()

As you would expect, there is another function for
the output of strings: puts(str). It expects a pointer
to a character string as its argument and returns
nothing. It is particularly handy for messages
because it appends a newline (‘\n’) to the output.

Here’s how it might be defined:

myputs (s)
char *s;
{
while(*s 1= '"\0')
putchar (*s++);
putchar('\n');
}

Since it is usually a part of the system, you won’t
need to define it yourself, just use it.

C Class #10 16 puts()

Other Handy String Functions

o strcat(s1, s2) : takes two character strings,
finds the end of the first one (‘\0’), then
appends the second string onto the first,
starting at the first string’s null.

e strcmp(s1, s2) : takes two character strings
and compares their corresponding characters.
It returns zero if the strings are the same or
non-zero, or true, if they are not. These rather
odd return values are typically the difference
~ between the last two characters that were
compared. |

» strcpy(s1, s2) : takes two character strings and
replaces the first with a copy of the second.

~ o strlen(s1) : takes a character string and
returns the number of characters it contains
before the first null.

C Class #10 17 Other Handy String Functions

- Strings Example

#define STAR "*" |
char *users[] = { "susie*swiss",
' "johnny*edam",
"sven*havarti”,
"bruce*american",
"brenda*brie" };

main()
char inuser[9], inpswd[9], teststring[18];
int i, nomatch;
*inuser = *inpswd = '\0';

/* get the userid & password */

while(strlen(inuser) == 0)

{7 .
printf("Enter your userid: ");
scanf("%8s", inuser);

} |

while(strien(inpswd) == 0)

{ o |
printf("Enter your password: ");
scanf ("%8s", inpswd);

}

C _Class #10 18

Strings Exampl‘c‘/e

Strings Example

/* assemble the test string */

strcpy (teststring, inuser);
strcat (teststring, STAR);
strcat (teststring, inpswd);

/* look for the test string in the valid id*password table */

for(i=0; i< sizeof users / (sizeof (char *)); ++i)
if(! (nomatch = strcmp(teststring, users[i])))
break;

if (nomatch)

printf("You are not allowed!\n");
else

printf("Welcome\n");

C Class #10 , 19 ' Strings Example

Strings Example

plois

Enter your userid:
bruce

Enter your password:
american

Welcome

plo1s

Enter your userid:
brenda

Enter your password:
brie

Welcome

plois

Enter your userid:
brenda

Enter your password:
brei

You are not allowed!

C Class #10 20 T Strings Example

- Command Line Arguments

Many times it is more natural for a program to
accept its input from the command line, rather
than having to ask for it. C provides a very
‘standard way of handling this need. |

The function main is declared as having two
arguments: an integer number of tokens in the
command line, usually called argc, and an
array of string pointers to the command line
tokens, usually called argv.

The programmer can assume that these
arguments will be passed if they are declared.

If used, they must occur in the correct order:
main(argc,argv). Remember the correct order
by always specifying them alphabetically.

If there are no command line arguments,
these variables will be defined and set
accordingly.

The variable argc is always at least one,
because the variable argv always contains at
least one string, the name of the program.

C Class #10 21 Command Line Arguments

Command Line Arguments
Example

#define STAR "*"

char *users[] = { "susie*swiss",
"johnny*edam",
"sven*havarti",
"bruce*american",
"brenda*brie" };

main(argc, argv)

int argc; |

char *argv| 1;

{
char inuser[9], 1npswd[9] teststr1ng[18],
int i, nomatch; ; _

~ *inuser = *inpswd = "\6';

if (argc != 3)

{
printf(“user1d & password requ1red \n")
exit(100);

C Class #10 - Z2>mmand Line Arguments Example

Command Line Arguments
Example

/* get the userid & password */

for(i=0; i<8 & argv[1][i] != "\0'; ++i)
inuser[i] = argv[1][i];

inuser[i] = '\0';

for(i=0; i<8 && argv[2] [i] != '\o'; ++i)
inpswd[i] = argv[2][i];

inpswd[i] = '\0';
/* assemble the test string */

strcpy (teststring, inuser);
strcat(teststring, STAR);
strcat (teststring, inpswd);

/* 1ook for the test string in the valid id*password table */

for(i=0; i< sizeof users / (sizeof (char *)); ++i)
if(!(nomatch = stremp(teststring, users[i])))
break;

if (nomatch) :

printf("You are not allowed!\n");
else |

printf("Welcome\n");

C Class #10 | Tommand Line Arguments Example

- Results

pl1022

userid & password required
R(00100) ;

pl022 cpalmer zxcvbn
You are not allowed!
Rs

pl022 brenda brie
Welcome

Rs

pl022 bruce edam

You are not allowed!
R;

pl022 bruce american
Welcome

R;

C Class #10 23 ' ~ Results

~ A More Obscure Example

Both of these programs echo their command line
arguments. |

/* echo pgm 1 */
main{argc, argv)
int argc; ‘
char *argv[];

{

int i;

for(i=1; i<argc; ++i)
printf("%s%c", argv[i], (i<argc-1) 2 ' ' : '\n');

/* echo pgm 2 */
main(argc, argv)
“int argc;
char *argv][]:
while(--argc > 0)
printf((arge>1) ? "%s " : "%s\n", *++argv);

C Class #10 25 A More Obscure Example

An Introduction to
the C Programming Language

Class 11

September 19-20, 1988

 Charles Palmer
CPALMER at YKTVMZ
(CENET Course #lYT0040l)

Yorktown Heights, NY
Internal Use Only

‘Fancy Declarations

In a declaration, the basic type of the variable can
be augmented by the addition of modifiers to its
name:

* adds the modifier "a pointer to”
() adds the modifier "a function returning”
[1 adds the modiﬁef "an array of”

Since C allows the use of more than one identifier
at a time, we can create many combinations of

types.

The method ‘use‘d to “read” these compound
declarations is as follows:

* The [] and () modifiers have higher priority
than *. - . |

e Parentheses used to group parts of the
expression have the highest priority. Empty
parentheses indicate a function.

e “Read” the declaration from the inéide out.

C Class #11 2 Fancy Declarations

Fancy Declarations

int bored[8] [8]

int *ipar[10]
char *flavor[4]
char (*pflavor) [4]

char *msgs[4][5]

int **finger

int (*fic)[3][3]

/* an 8 item array of
8 item arrays of int */

/* a 10 item array of pointers to int */

/* a 4 item array of pointers to char */

/* a pointer to a 4 item array of char */

/*

4 item array of
item arrays of pointers to char */

[5; -

/*

pointer to a pointer to int */

-1

pointer to a 3 item array of
item arrays of int */

/*

w

C Class #11

3 | Fancy Declarations

Pointers to Functions

A variable can be declared'aé “a pointer to a
function returning a type”. An occurrence of ()
together, with no intervening declarations, denotes
“a function”. Then, using the priority rules
mentioned earlier, we can have declarations like
the following: o |

char *yesno(); - /* function returning pointer to char */
char (* terse) (): /* pointer to function returning char */

int (*cmdprocs [5]) (); /* array of 5 pointers to
‘ functions returning int */ -

int (*(ugly[51)())(); /* array of 5 pointers to
functions returning
pointers to functions
returning int */

The proposed ANSI C standard allows arg types
within the () of the function definitions.

C Class #11 4 ~ Pointers to Functions

Pointers to Functions Example

main()

{
int (*funptr)(); | /* funptr is a pointer to
| a function returning int */

extern int (*funretfptr())(); /* funretfptr is a function

returning a pointer to a
function returning int */

funptr = (*funretfptr) (0); /* set the pointer */

(*funptr) () ; /* invoke the returned function
via a pointer to it */

exit(0);

}

int foop() | /* little test function */

{
puts ("hi there");
return 0;

}

int (*funretfptr()) () /* function returning a pointer
: to a function returning int */
printf("funretfptr: fp = %08x\n", foop);
return (int (*)()) foop;

}

C Class #11 : 5 Pointers to Functions Example

Pointers to Functions Example

pl15
funretfptr: fp = 00000032
” hi there I

C Class 11 =~ = 6 Pointers to Functions Example

Structure Type Specifiers

C provides a way to declare data types that can
contain varied types of data. This type is similar
to the Pascal record or the PL/1 structured data

type.

A structure declaration consists of a template and
a variable list.

struct { - /* T */

int day; /* E */

int month; | | : /* M */

int year; [* P */

int daynumber; /* L */

char dayofweek[10]; /* A */

| char monthname[10] ; /[* T */

} [E ¥/
birthdate, marriage_date; /* var list */

This declares the variables birthdate and
marriage_date to consist of 4 integers and two -
10-character arrays. | |

C Class #11 o 7 Structure Type Specifiers

Structure Type Specifiers

If desired, a structure can be given a tag, or name, .
thus allowing the same structure to be used in
declarations simply by name. This can save some
typing as well as making it possible to have
‘globally defined structure templates or to place
structure templates in a header file that can be

included in the source files that need it.

struct date {
int day;
int month;
int year;
int daynumber;
char dayofweek[10];
char monthname[10];

)}

struct date birthdate, marriage date;

/*
/*
/*
/*
/*

I*
B

/*

/*

*/
*/
*/
*/
*/
*/
*/
*/

m-a>»r~v=m-

var list */

C Class #11 — 8 Structure Type Specifiers

Structure Type Specifiers

Initialization

If a structure variable is external/global or static, it
can be given initial values. The scope of a
“structure variable depends on where the variable
is defined, not where the template is defined.

/* global scope */
struct graddate {
int mm;
int dd;
int yy;
char degree[4];
} BSdate = { 5, 21, 77, "BS" };

main()
{
/* local scope */
static struct graddate MSdate = { 8, 21, 86, "MS" };

C Class #11 | 9 Structure Type Specifiers

Structure Components

To gain access to the “insides” of structures, we
use yet another operator, the structure member
operator ‘" . To use a particular member of a
structure variable, you use the name of the
structure variable (not the template), followed by
¢’, followed by the name of the desired member
inside the structure template. You can then use
this rather longish name anywhere you could use
a plain variable of the same type as the structure
member. | |

struct gradate {
int mm;
int dd;
int yy;
char degree[4]; “
)} Msdate = { 8, 21, 86, "MS" };
printf("She received her %s degree on %02d/%02d/%02d\n",
MSdate.degree, MSdate.mm, MSdate.dd, MSdate.yy);

C Class #1 | 10 Structure Components

Structure Components

e A component of a structure can have any type
except “function returning ...”. | -

e Component names within a structure must be
distinct, but they may be the same as
component names of other structures and may
be the same as regular variables or functions.

struct pool { float length; float width; } hispool;
struct pooltable { int length; int width; } mypool;

double Tength; char width[] = "width";

C Class #11 11 ~ Structure Components

Structure Components

e If a structure tag is defined as one of the
components of a structure, the scope of the
tag extends to the end of the block in which
the outer structure is defined.

struct someone { char name[80]; B
char address[80];
struct date {
int mm; int dd; int yy;
} birthdate;
| -} me;
[* ... */

struct date employment_date;

CClass /A1 12 “Structure Components

Structure Components

¢ Structures within structures (nested structures)
are initialized the same way that plain
structures are, including the { and }.

struct someone me = { "John Q. Luudii",
"P0 Box 218",
{8, 31, 1956 },
};

o Arrays of structures are possible: struct
someone group[10]. Each item in the array is
a complete “someone” struct.

struct someone us|’] = {
' | {"Chester G. McChew",
"PO Box 218",
{1, 15, 84} },

{"Chelsea Gyland",
"PO Box 219",
{5, 22, 86 } }

| |

C Class #11 13 Structure Components

Structure Components

e The sizeof a structure is the sum of the
storage required to store all its components
and whatever padding of unused space is
required by the compiler or machine
architecture. You may not always assume
that structure ‘member_s are in consecutive
memory locations. For example, the structure

struct object {

long int length;
Tong int width;

char color;

}s

would have a sizeof (struct object) equal to
nine bytes on a PS/2 as opposed to twelve on
an RT.

C Class #11 14 Structure Components

Structure Components

¢ |f a structure has various types within it, take

advantage of boundary requirements if they

exist.

/* Use this, taking up no more than 12B */

struct object {
| ‘long int length; /*
long int width; /*
short int /*
char color; /*

}s

4B boundary
4B boundary
2B boundary
1B boundary

/* ... instead of this, taking up to 16B */

struct object {
char color; /*
long int length; /*
short int /*
long int width; /*
}s;

1B boundary
4B boundary
2B boundary
4B boundary

*/
*/
*/
*/

*/
*/
*/
*/

C Class #11 | 15 — Structure Components

Structures Example

#define MAX - 5
#define FEMALE 'f'
#define MALE "m'

struct ename { char last[40]; char mi; char first[20]; };
struct IBMer { | ' :
struct ename name;
int sernumber;
char sex;
}s
main()
{
struct IBMer employee[MAX];
int i,notright;
double junk;
char ch;

 for(i=0; i<MAX; ++i)
{
printf("\n***kkkiik | 35t pame: ");
scanf("%s", employee[i].name.last);
if(*employee[i] .name.last == '*')
break;
*employee[i] .name.last = toupper(*employee[i].name.last);

printf("\n * First name: ");
scanf("%s", employee[i] .name.first);
*employee[i] .name.first = toupper(*employee[i].name.first);

C Class #11 ‘ 16 o Structures Example

Structures Example

printf("\n * middle initial: ");
for(ch=getchar(); !(isalpha(ch)); ch=getchar());
employee[i] .name.mi = toupper(ch); "

printf("\n * sex (m/f): ")

for(employee[i].sex=getchar();

(employee[i].sex!=FEMALE && employee[i].sex!=MALE);
employee[i] .sex=getchar() |

)s

employee[i].sernumber = i;
++employee[i].sernumber; /* don't want any zeros */

printf("0k, %s. %s %c. %s has serial # %d\n",
(employee[i].sex==FEMALE ? "Ms" : "Mr"),
employee[i] .name.first, employee[i].name.mi,
employee[i].name.last, employee[i].sernumber) ;

}

printf("no more new folks, for now\n");

} :

C Class #11 17 | - Structures Example

Structures Example Results

p1118

*kkkkkxkkk | ast name: ride
* First name: sally
* middle initial: r
* sex (m/f): f
0k, Ms. Sally R. Ride has serial # 1

*kkkkkkkk |ast name: hutt
* First name: Jabba
* middle initial: t
* sex (m/f): e

r

m
0k, Mr. Jabba T. Hutt has serial # 2

% %k ko ok kkk Last name: *
no more new folks, for now

C Class #11 R 18 Structures Example Results

Pointers to Structures

Pointers to structures are declared similarly to the
way in which pointers to anything else are
declared:

struct flavors {
char name[30];
int price;
double calories;
} 1C _menu[31];

struct flavors *current_choice;

The last operator, the indirect membership
operator “—>", is used with a pointer to a
structure to identify a member of that structure.

printf("What flavor would you like?");
scanf("%s", current_choice->name);

printf("Sorry, we're out of %s\n", current_choice->name)

C Class #11 19 Pointers to Structures

Pointers to Structures Example

struct flavors {
char name[10];
int instock;
double calories;

}s

struct flavors IC menu[] = { {"raspberry”,1,5500.},
{"cranberry",1,1200.},
{"prunberry",0, 300.},
{"strwberry",0,3400.},
{"blueberry",1,2800.},
{"blakberry",0,1660.} };

struct flavors SH menu[] = { {"chocolate",0,8400.},
{"vanilla", 1,7200.},
{"huckberry",0,5400.} };

struct flavors *current_choice;

C Class #11 | 20 Pointers to Structures Example

Pointers to Structures Example

main()

{
char choice[10];
int i, menusize;

for(menusize = 0; menusize==0;)
{
printf("\n what do you want?\n");
scanf("%s", choice);
if(!(strcmp(choice, "ic")))
{
menusize = sizeof IC menu / (sizeof IC_menu[0]);
current_choice = &IC_menu[0];

}
else if(!(strcmp(choice, "sh")))

{ .
menusize = sizeof SH menu / (sizeof SH_menu[0]);
current_choice = &SH_menu[8]; ’
}
else

printf ("we only have \"ic\" or \"sh\".\n");

C Class #11 21 Pointers to Structures Example

Pointers to Structures Example

printf("\n and what flavor do you want?");
~scanf("%s", choice);
for(i=0; i<menusize; ++i, ++current_choice)
if(!(strcmp(choice, current_choice->name)))
break; ‘

if (i >= menusize) :

printf("\n that ain't one of our choices! \n“)
else if(current_choice->instock > 0)

printf("\n that'11 be %e calories.\n",

current_choice->calories);

else .

printf("\n too bad, we ran out of %s\n",

| (*current.choice) .name);

C Class #11 ~ 22 Pointers to Structures Example

Results

pll2l

what do you want?

ic

and what flavor do you want?
~ blueberry

that'11 be 2.800000e+003 calories.

pll21

what do you want?

hs

we only have "ic" or "sh".
‘what do you want?

sh

and what flavor do you want?
banana '

that ain't one of ur choices!

piiZi

what do you want?

sh |

and what flavor do you want?
chocolate

too bad, we run out of chocolate

C Class #11 23

Results

Recursive Structures

Structures may not contain instances of A
themselves, but may contain pomters to instances
of themselves:

/* Illegal !!! */

struct CardCatEntry {
char[80] title;
char[80] author;
struct CardCatEntry OtherBooks;

}s

/* just fine */

struct CardCatEntry {
char[80] title;
char[80] author;
struct CardCatEntry *OtherBooks;

}s

C Class #11 | 24 ‘Recursive Structures

~Hairy Example: TREESORT

#define MAXNODES 20

struct tnode ({
char word[20];
struct tnode *left;
struct tnode *right;
} forest[MAXNODES];

main()

{
char nextword[20];
int i;

printf("Let me alphabetize up‘to %d words\n", MAXNODES);
printf("Enter '.' for a word if you have less than that.\n")

treeclear(forest);

for(i=0; i<MAXNODES ; ++i)

{ | | |
printf("Enter the next word\n");
gets (nextword) ;
if (*nextword == '.')

break;
else _
treein(nextword, forest);

}

printf(,"Here‘s the sorted 1ist of words :\n");
treeout (&forest[0]);

printf("\nBye now\n");

C Class #11 25 Hairy Example: TREESORT

Hairy Example (con’t)

static int nextslot = 0; /* known only from this point on */
/* treeclear - initializes the tree structure */

treeclear (tree)
struct tnode tree[];

{
int i;
for(i=0; i<MAXNODES; ++i)
{
tree[i].word[0] = *\0O';
tree[i] .left = 0;
tree[i].right= 0;
} |
} ,

C Class #11 . 26 Hairy Example (con*)

Hairy Example (con’t)

/* treein - inserts a new word into the tree */
/* in the appropriate place. */

treein (newword, treenode)
char newword[]; |
struct tnode *treenode;

{
if(*treenode->word == '\0')
{
strcpy(treenode->word, newword);
++nextslot;
}
else
{
~ if(strcmp(newword, treenode->word) == 1)
{ /* new word greater than current */
if (treenode->right == 0)
treenode->right = &forestnextsiot];
treein(newword, treenode->right);
} .
else if(strcmp(newword, treenode->word) == -1)
{ /* new word less than current */
if (treenode->left ==0)
treenode->left = &forest[nextslot];
~ treein(newword, treenode->left);
} A
}
}

C Class #11 27 Hairy Example (con’t)

‘Hairy Example (con’t)

/* treeout - traverses the tree in an inorder */
/* fashion, printing the sorted tree. */

treeout (treenode)
struct tnode *treenode;

{
if(treenode->left != 0)
treeout(treenode->left);
printf("%s\n", treenode->word);
if(treenode->right != 0)
treeout(treenode->right);
}

C Class #11 | 28 Hairy Example (con’)

Hairy Example Results

pl125

Let me alphabetize up to 20 words

Enter '.' as the last word if you have less than that.

Enter the next
C

Enter the next
is

Enter the next
an

Enter the next
algebraic
Enter the next
“programming
Enter the next
language

Enter the next

Here's the sorted list of words :

c

an
algebraic
is

language
programming

Bye now

word

word

word

word

word

word

word

C Class #11

29

Hairy Example Results

“Union Type Specifiers

This specification allows you store different data
types in the same memory space.

¢ The union type specification of C can be
compared to the EQUIVALENCE statement of
FORTRAN or the BASED ATTRIBUTE of PL/1.

¢ Unions are defined in the same format as
structures: templates with optional tags and
required member names that are unique
within the template.
union pacific { long enginé;

char coal[4];
double caboose;

}s

union pacific choo choo;

C Class #11 | 30 Union Type Specifiers

Union Type Specifiers

e When you declare a union variable, the
compiler allots enough space to hold the
largest component of the union.

e If a union variable is external/global or static,
it can be given initial values. The scope of a
union variable depends on where the variable
is defined, not where the template is defined.

C Class #11 31 Union Type Specifiers

Union Type Specifiers

For this example union,

union pacific { long engine;
char coall[4];
double caboose;

}s
union pacific choo_choo;

the memory allocation on an IBM 370 would look
like this " -

long engine;

char coall[4];

double caboose;

union pacific choo_choo;

bytes

C Class #11 _ | 32 Union Type Specifiers

Union Type Specifiers

e A union variable can only contain one item at
a time, since the components are effectively
overlaid in the memory allocated to the union.

~ o The membership operator ‘.’ and the indirect
membership operator ‘—>’ can be used just
as for structures.

e The scope of union templates and variables as
well as what data types unions may contain
are the same as for structures.

C Class #11 33 Union Type Specifiers

Union Type Specifiers

e |tis up to you to remember what kind of data
was last stored in a union variable. The best
way is to embed the union inside a structure
along with a flag variable to identify what was
‘last put there. | | |

struct unionkeeper {

int which;

union pacific {
long engine;
char coal[4];
double caboose;

}s
}s

C Class #11 34 Union Type Specifiers

Union Examples

union manualkey { Tlong partnumber;
char manualnumber[12];
double weight;

}s

#define ITSA_PARTNUM ©
#define ITSA MANNUM 1
#define ITSA_WEIGHT 2

struct keyunion { int whatitis;
union manualkey key;
} DBrequest;

main ()
{ |
/* assigning the char array */
DBrequest.whatitis = ITSA_MANNUM;
strcpy(DBrequest.key.manuainumber, "GA2276009");
printkey (&DBrequest) ;

}
/* function to print the union variable whatever it is */
printkey (mkey) |
struct keyunion *mkey;
{
switch(mkey->whatitis) {
case ITSA PARTNUM: printf("%d1",mkey->key.partnumber) ;
A break; '
case ITSA MANNUM: printf("%s" ,mkey->key.manualnumber) ;
break; ‘
case ITSA WEIGHT: printf("%e" ,mkey->key.weight) ;
break;- '
}
}

C Class #11 ~ 35 Union Examples

A Common PC Use of Unions
and Structures

The PC has four general purpose 16-bit registers,
AX, BX, CX, and DX. Each of these registers can
be used 16-bits at a time by using the register’s
name. However, each is divided into two 8-bit
registers called the ‘high’ and ‘low’ registers.
These are referenced using the names AH & AL
for AX, BH & BL for BX, etc.

if an assembly language subroutine needs or |
returns values for certain of these 12 registers, the
following structure/union combination would be
useful: | |

C Class #11 ~ A Commaa PC Use of Unions and Structures

Union of Structures Example

struct WORDREGS {
unsigned int ax;
unsigned int bx;
unsigned int cx;
unsigned int dx;

}s

struct BYTEREGS {
unsigned char al, ah;
unsigned char bl, bh;
unsigned char cl, ch;
unsigned char d1, dh;

}s
/* general purpu.e regiSters union */
/* overlays the corresponding word and byte registers. */
/* ~ *

union REGS {
struct WORDREGS x:
struct BYTEREGS h;
} regs_in, regs out;

C Class #11 37 Union of Structures Example

Union of Structures Example

main()

{

int month, day, year;

/* get the current date */
regs_in.x.ax = 0x2a00;/* set AX to the function code */
regs_in.x.bx = 0x21; /* set BX to the DOS INT number */

interrupt2l(regs_in, regs_out);

year = regs out.x.cx;
month = regs_out.h.dh;
day = regs_out.h.dl;

printf ("today's date (in Europe) is /d//d//d\n"
year, month, day); . g

C Class #11 38 Union of Structures Example

Casting Comments

In past examples the cast operator has been used
to force a data conversion whenever we wanted
one. However, it should be noted that the cast
operator is not limited to causing conversions
to/from the basic data types. Any data type can
be used as a cast.

/* floating to int */
i = (int) f;

/* from ptr to ? to ptr to int */
ip = (int *) p;
/* from ptr to ? to ptr to a mystruct structure */

mp = (struct mystruct *) sp;

/* from ptr to ? to ptr to an onion union */
op = (union onion *) sp;

C Class #11 39 Casting Comments

~ An Introduction to
the C Programming Language

Class 12

September 19-20, 1988

~ Charles Palmer
CPALMER at YKTVMZ
(CENET Course #1YT00401)

T. J. Watson Research Center
Yorktown Heights, NY
Internal Use Only

Outline

*x Typedefs

» Enumerations

~ Bit Fields

* The C Library

+ File /0

x Dynamic Memory Allocation
* Program Termination

x Whatis C+ +?

» Where to Get Help

C Class #12 1 ~ Outline

typedef

The typedéf keyword allows you to define you own

name for a data type. It is similar to #define, with
these three differences: ‘

1. typedef is limited to giving symbolic names to
data types only. | |

2. the typedef is handled by the compiler, not the
preprocessor.

3. typedef is somewhat more flexible.

C Class #12 2 ~ typedef

- typedef examples

typedef unsigned char BYTE;

typedef char *STRING;
typedef int fixed;

typedef float *fptr, (*ffunc)();
typedef struct comp { float real; float imag; } COMPLEX;

STRING ofchars;
fixed point;

fixed abs();

fptr fp;

fptr *indfp;

ffunc sqrt;

ffunc mathsubs[10];

COMPLEX filter[1024];

,/*

/*
/*
/*
/*
/*
/*

%

a ptr to char */

an integer */

a function returning integer */
pointer to float */

pointer to pointer to float */

pointer to function returning float */
10 element array of pointers

to functions returning float */

1024 element array of

struct comp variables */

C Class #12

3 typedef examples

Enumeration Types

A recent addition to C, an enumeration type is a
set of integer values represented by identifiers
called enumeration constants. These constants
are specified when the type is specified:

enum gumbotype { okra, seafood, crawfish } gumbo;
This declaration defines a new enumeration type
gunbo, whose values are okra, seafood, and

crawfish. A variable of this type is also declared,
which can be given the specified values:

gumbo = crawfish;

C Class #12 - 4 Enumeration Types

Enumeration Types

The compiler implements these types by picking
integer values to associate with the enumeration
constants. If necessary, the programmer can
specify these values in the declaration:

enum meltpoint { Tead=120, water=32, tin=lead+5 } mpts;

One would expect enumeration types to enforce -
strict type-checking. Unfortunately, this is not the
case. ANSI-C and most implementations treat all
enumeration types as plain integers. As a result,
enumeration constants are little more than a way
to name integer constants.

C Class #12 5 | Enumeration Types

Bit Fields

It is sometimes necessary, usually for machine
dependent reasons, to be able to define variables
of certain numbers of bits. In most cases, the
programmer can make do with an integer variable
and the logical operators for shift, and, & or
operations. A typical example of such a need
(probably the only justifiable one) is that of
accessing system-dependent control blocks.

* The declaration of a bit-field is simply a
structure whose components are rather
strangely specified unsigned integers.

struct BitsNpieces{

unsigned top:1;

unsigned :2; /* unused bits */

unsigned mask:4;

unsigned :0; /* force "appropriate" boundary" */

unsigned extra:2;
} BitBucket;

C Class #12 | 6 Bit Fields

Bit Fields

¢ The individual components can be used like
other structure components, as in

BitBucket.top = 1;

e Bit field components may not be used with the
& operator.

e A component name may be omitted in order |
to force unused space. The setting of the bits
in such a space is undefined.

e An unnamed component of width zero | |
indicates that the following component should
be aligned to an “appropriate” boundary.

C Class #12 7 | Bit Fields

Example

/* 1t.psw_ec.h> , */
/* */
/* The 370 EC mode non-XA PSW bit-field structure. */
/* */
typedef struct {
unsigned int 1; /* (zero) */
unsigned int PerMask 1; /* Pgm Event Rec Mask */
unsigned int : 353 /* (zero) Y
unsigned int XlateMode : 1; /* Translation Mode (1) */
unsigned int IOMask :+ 13 /* 1/0 Mask */
unsigned int ExtMask 1; /* External Mask | */
unsigned int PSWKey ¢ 4; /* PSW Storage Keys */
unsigned int ECMode : 1; /* EC Mode (1) */
unsigned int MCheckMask : 1; /* Machine Check Mask */
unsigned int WaitState 1: /* Wait State ‘ */
unsigned int ProbState 1; /* Problem State | */
unsigned int SecSpaceMode : 1; /* Secondary Space (1) */
unsigned int : 1; /* (zero) o */
unsigned int CondCode ¢ 2; /* Condition Code */
unsigned int FixPtOvfl : 1; /* Fixed Pt Overflow */
unsigned int DecOvfl ¢ 1; /* Decimal Overflow */
unsigned int ExpUnderfl 1; /* Exponent underflow */
unsigned int SignifMask 1; /* Significance Mask */
unsigned int : 165 /* (zero) */
unsigned int InstrAddr : 24; /* Instruction Address */

} PSW_EC;

PSW_EC mypsw;

if(mypsw.SignifMask)
mypsw.SignifMask = 0;

C Class #12 8 | Example

Why You Should Avoid Them

¢ The use of bit-fields is likely to be
non-portable. Their only only reasonable uses
are when memory is very scarce or when a
system-dependent data structure must be
matched exactly.

e Some machines have a 16-bit word size,
which limits the maximum width of a bit field.
Other machines may have a 32-bit word size.

e The order in which different machines will
pack bit fields ini» a word will vary. For
example, on an IBM 370 the bits are packed
left to right, i.e. from the most significant bit to
the least. However, on an IBM PC the bits are
packed in just the opposite manner.

e The use of an unnamed bit field of length zero
| to force an “appropriate” boundary may
produce different alignments on different
machines.

C Class #12 9 Why You Should Avoid Them

Use Masks Instead of Bit
Fields

Most programs that need to work with bit-oriented
data use a combination of unsigned ints and
H#define rather than bit fields. This results in more
readable as well as portable code. |

unsigned Tong int status;

#define ASLEEP
#define DOZING
#define TIRED
#define BORED
#define AWAKE
[* ... */

0x80000000
0x40000000
0x20000000

- 0x10000000

0x08000000

#define zzzz(s) (s & (ASLEEP | DOZING))

if (zzzz(status))

status &= “ASLEEP; /* Wake him up! */
status |= AWAKE;

C Class #12

10 Use Masks Instead of Bit Fields

The C Library

Most serious C language processors provide a
library of commonly used functions for the
programmer. They are supplied in a combination

of two ways:

e as compiled/translated functions in a library
that is used at link time.

e as macros defined in header files that can be
~ #include’d by the preprocessor, i.e. in stdio.h.

C Class #12 11 , ~ The C Library

The C Library

A few functions can almost always be assumed to
be available in one form or another: |

/* 1/0 functions we've used */

getchar() /* get a char from stdin */
putchar() /* put a char to stdout */
gets() /* get a line from stdin -
puts() /* put a line to stdout - */
scanf () /* get formatted input from stdin */
printf() /* write formatted output to stdout */

/* string functions we've used */
strien() /* find the length of a string */
strcmp () /* compare two strings */
strepy() /* copy a string */
strcat() /* combine two strings into one */
strchr() /* searches a string for a char */

/* and some others we haven't used */
atoi () /* convert string to int */
atof() /* convert string to float */
sprintf() /* do a printf into a string */

The proposed ANSI-C standard does define a
minimum library subset.

C Class #12 12 The C Library

The C Library

A number of useful macros that handle the testing
and conversion of characters are also usually
defined for the programmer. They can usually be
found in either stdio.h or ctype.h.

/* returns true if c is : */
isalpha(c) /* alphabetic */
isdigit(c) /* a digit ‘ */
isTower(c) /* Tower case */
isupper(c) /* upper case */
isspace(c) /* whitespace */
isalnum(c) /* alphanumeric (isalphal|isdigit)*/
isxdigit(c) /* a hexadecimal digit */
iscntrl(c) /* a control character */
ispunct (c) /* a punctuation character */
isprint(c) /* a printable character */

/* returns c converted to */
toupper(c) /* uppercase . */
tolower(c) /* Towercase */

C Class #12 13 The C Library

The C Library

There will usually be collections of other very
specialized functions available:

e mathematical functions (trig, logs, etc.)
* system functions (time, date, interrupts e etc.)

e data communications (comgetc, mport
outport, etc.) |

e graphics functions (line, polygon, fill, etc.)

Since many of these special functions return -
values of other than type int, they must be
declared as such. There will usually be some
header files associated with these general groups
of library functions that contain these declarations.
For example, all of the math functions are |
declared in the file math.h.

C Class #12 14 The C Library.

File 1/0

So far, all of our example programs that performed
I/O to/from a file did so through our redirecting of
stdin and stdout. However, this method is limited.
For example, if output is redirected, then prompts
written using printf() go into the file instead of to

the screen.

C provides another family of library functions that

handle file I/0. To use them the header file stdio.h
must be #include’d as it contains some special
declarations these fuiictions need.

fopen() /* prepares a file for I/0 */
fciose() /* ends 1I/0 to a file */
getc() /* single character file input */
putc() /* single character file output */
fscanf() /* scanf() input from a file */
fprintf() /* printf() output to a file */
fgets() /* gets() input from a file */
fputs() /* puts() output to a file */
fseek() /* random access into a file */
C Class #12 15 File I/O

File 1/10

The fopen() function returns what is called a
handle for the opened file.

* The handle identifies the file with a system
dependent data structure that contains
information about the file. Examples of this
would be FCB’s under DOS or VM. One of
these data structures is allocated for you by

- fopen() and a pointer to it is returned.

e The handle is one of the parameters to all of
the other functions.

e Many times the handle will be of a special
data type defined in stdio.h. As a result, the
declarations for fopen() and the variable in
which the handle is kept will need to be
declared with this special type, usually like
FILE *fopen(), *filehandle;. |

e |f the fopen() fails, it returns zero.

C Class #12 16 ' - File VO

File 110

stdin, stdout, stderr

e When a program is started, three “files” are
opened automatically and file handles are
provided for them. These files are the
standard input, output, and error output, or
stdin, stdout, stderr.

* These file pointers are defined for you in
stdio.h. |

e Although they are usually connected to the
terminal, they can be treated as files since in
fact they could be redirected to a file.

As an example, the getchar() and putchar() |
functions are usually macros defined in stdio.h as

follows:

#define getchar() getc(stdin)
#define putchar(c) putc(c,stdin)

C Class #12 17 | - ~ File 10

File 1/0 Example

#include <stdio.h>
/* concatenate the files passed as arguments, all onto stdout */

main(argc, argv)
int argc;
char *argv[];
{
FILE *fopen(), *handle;

if (argc == 1) /* no args, so use stdin */
copyfile(stdin);
else
while (--argc > 0)
{ .
if ((handle = fopen(*++argv, "r")) == NULL)
{
fprintf(stderr, "fopen failed on '%s'\n", *argv);
break; _ : ‘
}
else
{
copyfile(handle);
fclose(handle);
| | |
}
}

copyfile(fileptr)
FILE *fileptr;
{

int c;

while((c = getc(fileptr)) != EOF)
putc(¢, stdout);

C Class #12 18 " File /O Example

File I/O Results

p1218 test.h test.c > test.all

t test.all
/* test.h */

#define FEE 1024
#define FIE 512
#define FOE 256
#define FOO 64

/* start a comment
#include <test.h>
end a comment */

main(argc, argv)

int argc;

char **argv;

{

- printf("->%d\n", FEE);
exit(0);

C Class #12 19 - File /0 Results

Dynamic Memory Allocation

In some of our example programs, we allocated a'
large amount of memory to hold an input whose
size we could not predict or was not constant.
This is many times a waste of storage since you
must allocate the largest possible memory size

that you will accept. |

A better approach is to allocate memory at run
time, or “on the fly”, when you know how much
you need.

C Class #12 20 Dynamic Memory Allocation

-Dynamic Memory Allocation‘

The C library function malloc() takes one
argument, the number of bytes, or chars, that you
want. If the memory is available, it returns a
pointer-to-char that is pointing to the newly
allocated memory. This pointer must then be cast
into whatever type of memory you need it to be. If
no memory was available, this function returns
NULL (zero).

The memory is not initialized in any way, so the
caller must assume {iiat it will contain garbage
information. | |

Another function, free(), gives back storage that
was previously malloc’ed. It requires a single
argument, a char pointer to the previously
allocated memory block.

C Class #12 21 Dynamic Memory Allocation

Dynamic Memory Allocation

#include <stdio.h>
#define MAXSTRINGS 100

main()

{
char *malloc();
“char *memp, instring[80], *strings[MAXSTRINGS];
int i=0, j=0, size=0;

for(;;)
{
printf("Enter the next string, or '.' to end\n");
gets(instring);
if (*instring == '.')
break;
else
{
if (memp = malloc (strlen (instring)))
{
printf("New memory allocated at %u.\n", memp)
strcpy(memp, instring);
strings[i++] = memp;
}
else
{
printf("out of memory\n");
exit(1); |
}

C Class #12 22 Dynamic Memory Allocation

Dynamic Memory Allocation

for(j=0; j<i; ++j) /* find out how much room we need */
size += strlen(strings[j]); '

if(!'(memp = malloc(size))) /* allocate it */
{
printf("out of memory\n");
exit(1l);
}
- *memp = NULL; ~ /* make it a zero-length string */

for(j=0; j<i; ++j) /* & build up the sentence there */
(|

strcat(memp, strings[j]):

free(strings[i]);
}

printf("here is the whole sentence: \n");
printf("'%s'\n", memp);

free(memp) ;

exit(0);

C Class #12 | 23 Dynamic Memory Aliocation

Dynamic Memory Allocation

pl222

Enter the next string, or '.'
This

New memory allocated at 3782.

Enter the next string, or '.'

Is a

New memory allocated at 3790.
Enter the next string, or '.’
Test

New memory allocated at 3798.
Enter the next string, or '.'
of the

New memory allocated at 3806.
Enter the next string, or '.'
early warning system.

New memory allocated at 3816.
Enter the next string, or '.’'

here is the whole sentence:

to

to

end
end
end

end

end

end

'This Is a Test of the early warning syStém.'

C Class #12

24

Dynamic Memory Allocation

calloc()

Another common library function used for dynamic
memory allocation is calloc().

e |t wants two arguments: the first is the number
of chunks of memory you want, and the
second is how many bytes are in each chunk.

¢ |t returns a pointer-to-char (like malloc()) that
points to the newly allocated block of memory.

e [t returns NULL if it fails.

e The memory is cleared, that is, set to all
Zzeros. |

* The free() funCtion will free calloc’ed memory
also. '

C Class #12 25 . ~ calloc()

Program Termination

Most systems provide some way for a terminating
program to communicate back to the system some
indication of whether it ran okay or not. Then,

using REXX (VM) or BATCH (PCDOS) or the UNIX™
shell, the system can check thls return code and
decide what to do next.

/* rexx example */
'CW 'programname
if (rc <> 0)
then say 'Compile Errors!';
else
'LINKC 'programname

The C library provides a function exit() to set this
return code. It takes one argument, the desired
return code. After calling this function, the
program will terminate, i.e. it does not get control -
back from the invocation of exit(..);.

If no call to exit is made, all C language
processors should set the return code to zero.

C Class #12 26 Program Termination

Whatis C+ + ?

C+ + is a superset of C that retains the efficiency
and notational convenience of C, while providing
facilities for |

e type checking
e data abstraction
e operator overlbading
e object-oriented programming
The definitive text is ' The C+ + Programmihg

Language”, by Bjarne Stroustrup who designed
the language.

The August 1988 issue of BYTE magazine also had
a good introductory article.

C Class #12 27 WhatisC+ + ?

Where to Get Help

The IBMPC, IBMVM, and IBMUNIX conferencing
disks are an invaluable source of help with
everything from programming problems to
portability concerns. Currently there are several
forums whose discussions are related to C:

* IBMPC
— C-ANSI
- CC++
— C-DEBATE
— C-DEVELO
— C-BM
— C-LANG
— C-LAT
— C-MS
— C-MsQC
— C-PITFAL
— C-TURBO
e VMIBM disk
— C-IBM370
— CWISH
e IBMUNIX disk
- C

C Class #12 28 Where to Get Help

Copies may be requested from:

IBM Thomas J. Watson Research Center
Distribution Services F-11 Stormytown
Post Office Box 218

Yorktown Heights, New York 10598

	PART_01.pdf
	PART_02.pdf
	PART_03.pdf

