
1

Lecture 4

Regular Expressions
grep and sed intro

Previously

• Basic UNIX Commands
– Files: rm, cp, mv, ls, ln
– Processes: ps, kill

• Unix Filters
– cat, head, tail, tee, wc
– cut, paste
– find
– sort, uniq
– comm, diff, cmp
– tr

Subtleties of commands

• Executing commands with find
• Specification of columns in cut
• Specification of columns in sort
• Methods of input

– Standard in
– File name arguments
– Special "-" filename

• Options for uniq

Today

• Regular Expressions
– Allow you to search for text in files
– grep command

• Stream manipulation:
– sed

• But first, a command we didn’t cover last time…

xargs

• Unix limits the size of arguments and environment
that can be passed down to child

• What happens when we have a list of 10,000 files
to send to a command?

• xargs solves this problem
– Reads arguments as standard input
– Sends them to commands that take file lists
– May invoke program several times depending on size

of arguments

a1 … a300

cmd a1 a2 …
xargs
cmd

cmd a100 a101 …

cmd a200 a201 …

find utility and xargs

• find . -type f -print | xargs wc -l
– -type f for files
– -print to print them out
– xargs invokes wc 1 or more times

• wc -l a b c d e f g
wc -l h i j k l m n o
…

• Compare to: find . -type f –exec wc -l {} \;

2

Regular Expressions

What Is a Regular Expression?

• A regular expression (regex) describes a set of
possible input strings.

• Regular expressions descend from a fundamental
concept in Computer Science called finite
automata theory

• Regular expressions are endemic to Unix
– vi, ed, sed, and emacs
– awk, tcl, perl and Python
– grep, egrep, fgrep
– compilers

Regular Expressions

• The simplest regular expressions are a
string of literal characters to match.

• The string matches the regular expression if
it contains the substring.

UNIX Tools rocks.

match

UNIX Tools sucks.

match

UNIX Tools is okay.
no match

regular expression c k s

Regular Expressions

• A regular expression can match a string in
more than one place.

Scrapple from the apple.

match 1 match 2

regular expression a p p l e

Regular Expressions

• The . regular expression can be used to
match any character.

For me to poop on.

match 1 match 2

regular expression o .

3

Character Classes

• Character classes [] can be used to match
any specific set of characters.

beat a brat on a boat

match 1 match 2

regular expression b [eor] a t

match 3

Negated Character Classes

• Character classes can be negated with the
[^] syntax.

beat a brat on a boat

match

regular expression b [^eo] a t

More About Character Classes
– [aeiou] will match any of the characters a, e, i, o,

or u
– [kK]orn will match korn or Korn

• Ranges can also be specified in character classes
– [1-9] is the same as [123456789]
– [abcde] is equivalent to [a-e]
– You can also combine multiple ranges

•[abcde123456789] is equivalent to [a-e1-9]
– Note that the - character has a special meaning in a

character class but only if it is used within a range,
[-123] would match the characters -, 1, 2, or 3

Named Character Classes

• Commonly used character classes can be
referred to by name (alpha, lower, upper,
alnum, digit, punct, cntrl)

• Syntax [:name:]
– [a-zA-Z] [[:alpha:]]
– [a-zA-Z0-9] [[:alnum:]]
– [45a-z] [45[:lower:]]

• Important for portability across languages

Anchors

• Anchors are used to match at the beginning or end
of a line (or both).

• ^ means beginning of the line
• $ means end of the line

beat a brat on a boat

match

regular expression ^ b [eor] a t

regular expression b [eor] a t $

beat a brat on a boat

match

^word

4

Repetition

• The * is used to define zero or more
occurrences of the single regular expression
preceding it.

I got mail, yaaaaaaaaaay!

match

regular expression y a * y

For me to poop on.

match

regular expression o a * o

.*

Repetition Ranges
• Ranges can also be specified

– { } notation can specify a range of repetitions
for the immediately preceding regex

– {n} means exactly n occurrences
– {n,} means at least n occurrences
– {n,m} means at least n occurrences but no

more than m occurrences
• Example:

– .{0,} same as .*
– a{2,} same as aaa*

Subexpressions

• If you want to group part of an expression so that
* or { } applies to more than just the previous
character, use () notation

• Subexpresssions are treated like a single character
– a* matches 0 or more occurrences of a
– abc* matches ab, abc, abcc, abccc, …
– (abc)* matches abc, abcabc, abcabcabc, …
– (abc){2,3} matches abcabc or abcabcabc

grep

• grep comes from the ed (Unix text editor) search
command “global regular expression print” or
g/re/p

• This was such a useful command that it was
written as a standalone utility

• There are two other variants, egrep and fgrep that
comprise the grep family

• grep is the answer to the moments where you
know you want the file that contains a specific
phrase but you can’t remember its name

Family Differences

• grep - uses regular expressions for pattern
matching

• fgrep - file grep, does not use regular expressions,
only matches fixed strings but can get search
strings from a file

• egrep - extended grep, uses a more powerful set of
regular expressions but does not support
backreferencing, generally the fastest member of
the grep family

• agrep – approximate grep; not standard

5

Syntax

• Regular expression concepts we have seen so
far are common to grep and egrep.

• grep and egrep have different syntax
– grep: BREs
– egrep: EREs (enhanced features we will discuss)

• Major syntax differences:
– grep: \(and \), \{ and \}
– egrep: (and), { and }

Protecting Regex
Metacharacters

• Since many of the special characters used in
regexs also have special meaning to the
shell, it’s a good idea to get in the habit of
single quoting your regexs
– This will protect any special characters from

being operated on by the shell
– If you habitually do it, you won’t have to worry

about when it is necessary

Escaping Special Characters
• Even though we are single quoting our regexs so the

shell won’t interpret the special characters, some
characters are special to grep (eg * and .)

• To get literal characters, we escape the character with
a \ (backslash)

• Suppose we want to search for the character sequence
'a*b*'
– Unless we do something special, this will match zero or

more ‘a’s followed by zero or more ‘b’s, not what we want
– ‘a*b*’ will fix this - now the asterisks are treated as

regular characters

Egrep: Alternation

• Regex also provides an alternation character | for
matching one or another subexpression
– (T|Fl)an will match ‘Tan’ or ‘Flan’
– ^(From|Subject): will match the From and

Subject lines of a typical email message
• It matches a beginning of line followed by either the characters

‘From’ or ‘Subject’ followed by a ‘:’

• Subexpressions are used to limit the scope of the
alternation
– At(ten|nine)tion then matches “Attention” or

“Atninetion”, not “Atten” or “ninetion” as would
happen without the parenthesis - Atten|ninetion

Egrep: Repetition Shorthands

• The * (star) has already been seen to specify zero
or more occurrences of the immediately preceding
character

• + (plus) means “one or more”
abc+d will match ‘abcd’, ‘abccd’, or ‘abccccccd’ but
will not match ‘abd’
Equivalent to {1,}

Egrep: Repetition Shorthands cont

• The ‘?’ (question mark) specifies an optional character, the
single character that immediately precedes it

July? will match ‘Jul’ or ‘July’
Equivalent to {0,1}
Also equivalent to (Jul|July)

• The *, ?, and + are known as quantifiers because they
specify the quantity of a match

• Quantifiers can also be used with subexpressions
– (a*c)+ will match ‘c’, ‘ac’, ‘aac’ or ‘aacaacac’ but will not

match ‘a’ or a blank line

6

Grep: Backreferences

• Sometimes it is handy to be able to refer to a
match that was made earlier in a regex

• This is done using backreferences
– \n is the backreference specifier, where n is a number

• Looks for nth subexpression
• For example, to find if the first word of a line is

the same as the last:
– ^\([[:alpha:]]\{1,\}\) .* \1$

– The \([[:alpha:]]\{1,\}\) matches 1 or more
letters

Practical Regex Examples

• Variable names in C
– [a-zA-Z_][a-zA-Z_0-9]*

• Dollar amount with optional cents
– \$[0-9]+(\.[0-9][0-9])?

• Time of day
– (1[012]|[1-9]):[0-5][0-9] (am|pm)

• HTML headers <h1> <H1> <h2> …
– <[hH][1-4]>

grep Family
• Syntax

grep [-hilnv] [-e expression] [filename]
egrep [-hilnv] [-e expression] [-f filename] [expression]

[filename]
fgrep [-hilnxv] [-e string] [-f filename] [string] [filename]
– -h Do not display filenames
– -i Ignore case
– -l List only filenames containing matching lines
– -n Precede each matching line with its line number
– -v Negate matches
– -x Match whole line only (fgrep only)
– -e expression Specify expression as option
– -f filename Take the regular expression (egrep) or

a list of strings (fgrep) from filename

grep Examples
• grep 'men' GrepMe
• grep 'fo*' GrepMe
• egrep 'fo+' GrepMe
• egrep -n '[Tt]he' GrepMe
• fgrep 'The' GrepMe
• egrep 'NC+[0-9]*A?' GrepMe
• fgrep -f expfile GrepMe

• Find all lines with signed numbers
$ egrep ’[-+][0-9]+\.?[0-9]*’ *.c
bsearch. c: return -1;
compile. c: strchr("+1-2*3", t-> op)[1] - ’0’, dst,
convert. c: Print integers in a given base 2-16 (default 10)
convert. c: sscanf(argv[i+1], "% d", &base);
strcmp. c: return -1;
strcmp. c: return +1;

• egrep has its limits: For example, it cannot match all lines that
contain a number divisible by 7.

Fun with the Dictionary
• /usr/dict/words contains about 25,000 words

– egrep hh /usr/dict/words
• beachhead
• highhanded
• withheld
• withhold

• egrep as a simple spelling checker: Specify plausible
alternatives you know
egrep "n(ie|ei)ther" /usr/dict/words
neither

• How many words have 3 a’s one letter apart?
– egrep a.a.a /usr/dict/words | wc –l

• 54
– egrep u.u.u /usr/dict/words

• cumulus

Other Notes

• Use /dev/null as an extra file name
– Will print the name of the file that matched

• grep test bigfile
– This is a test.

• grep test /dev/null bigfile
– bigfile:This is a test.

• Return code of grep is useful
– grep fred filename > /dev/null && rm filename

7

x

xyz

Ordinary characters match themselves
(NEWLINES and metacharacters excluded)
Ordinary strings match themselves

\m
^
$
.

[xy^$x]
[^xy^$z]

[a-z]
r*

r1r2

Matches literal character m
Start of line
End of line
Any single character
Any of x, y, ^, $, or z
Any one character other than x, y, ^, $, or z
Any single character in given range
zero or more occurrences of regex r
Matches r1 followed by r2

\(r\)
\n

\{n,m\}

Tagged regular expression, matches r
Set to what matched the nth tagged expression
(n = 1-9)
Repetition

r+
r?

r1|r2
(r1|r2)r3
(r1|r2)*

{n,m}

One or more occurrences of r
Zero or one occurrences of r
Either r1 or r2
Either r1r3 or r2r3
Zero or more occurrences of r1|r2, e.g., r1, r1r1,
r2r1, r1r1r2r1,…)
Repetition

fgrep, grep, egrep

grep, egrep

grep

egrep

This is one line of text

o.*o
input line
regular expression

Quick
Reference

Sed: Stream-oriented, Non-
Interactive, Text Editor

• Look for patterns one line at a time, like grep
• Change lines of the file
• Non-interactive text editor

– Editing commands come in as script
– There is an interactive editor ed which accepts the same

commands

• A Unix filter
– Superset of previously mentioned tools

Sed Architecture

scriptfile

Input

Output

Input line
(Pattern Space)

Hold Space

Conceptual overview

• All editing commands in a sed script are applied in
order to each input line.

• If a command changes the input, subsequent
command address will be applied to the current
(modified) line in the pattern space, not the original
input line.

• The original input file is unchanged (sed is a filter),
and the results are sent to standard output (but can
be redirected to a file).

Scripts
• A script is nothing more than a file of commands
• Each command consists of up to two addresses

and an action, where the address can be a regular
expression or line number.

address action command

address action

address action

address action

address action

script

Sed Flow of Control
• sed then reads the next line in the input file and

restarts from the beginning of the script file
• All commands in the script file are compared to,

and potentially act on, all lines in the input file

. . .cmd 1 cmd ncmd 2

script

input

output
output

only without -n

print cmd

