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ABSTRACT
We present a novel algorithm for the fast computation of PageRank,
a hyperlink-based estimate of the “importance” of Web pages. The
original PageRank algorithm uses the Power Method to compute
successive iterates that converge to the principal eigenvector of the
Markov matrix representing the Web link graph. The algorithm
presented here, called Quadratic Extrapolation, accelerates the con-
vergence of the Power Method by periodically subtracting off es-
timates of the nonprincipal eigenvectors from the current iterate of
the Power Method. In Quadratic Extrapolation, we take advantage
of the fact that the first eigenvalue of a Markov matrix is known
to be 1 to compute the nonprincipal eigenvectors using successive
iterates of the Power Method. Empirically, we show that using
Quadratic Extrapolation speeds up PageRank computation by25–
300% on a Web graph of 80 million nodes, with minimal overhead.
Our contribution is useful to the PageRank community and thenu-
merical linear algebra community in general, as it is a fast method
for determining the dominant eigenvector of a matrix that istoo
large for standard fast methods to be practical.

Categories and Subject Descriptors
G.1.3 [Numerical Analysis]: Numerical Linear Algebra—eigen-
values and eigenvectors; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—search process, information fil-
tering

General Terms
Algorithms, Performance, Experimentation

Keywords
PageRank, link analysis, eigenvector computation

1. INTRODUCTION
The PageRank algorithm for determining the “importance” of

Web pages has become a central technique in Web search [18]. The
core of the PageRank algorithm involves computing the principal
eigenvector of the Markov matrix representing the hyperlink struc-
ture of the Web. As the Web graph is very large, containing over a
billion nodes, the PageRank vector is generally computed offline,
during the preprocessing of the Web crawl, before any queries have
been issued.

The development of techniques for computing PageRank effi-
ciently for Web-scale graphs is important for a number of reasons.
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ACM 1-58113-680-3/03/0005.

For Web graphs containing a billion nodes, computing a PageRank
vector can take several days. Computing PageRank quickly isnec-
essary to reduce the lag time from when a new crawl is completed
to when that crawl can be made available for searching. Further-
more, recent approaches to personalized and topic-sensitive Page-
Rank schemes [11, 20, 14] require computingmanyPageRank vec-
tors, each biased towards certain types of pages. These approaches
intensify the need for faster methods for computing PageRank.

Eigenvalue computation is a well-studied area of numericallin-
ear algebra for which there exist many fast algorithms. However,
many of these algorithms are unsuitable for our problem as they re-
quire matrix inversion, a prohibitively costly operation for a Web-
scale matrix. Here, we present a series of novel algorithms devised
expressly for the purpose of accelerating the convergence of the
iterative PageRank computation. We show empirically on an 80
million page Web crawl that these algorithms speed up the compu-
tation of PageRank by 25–300%.

1.1 Preliminaries
In this section we summarize the definition of PageRank [18]

and review some of the mathematical tools we will use in analyz-
ing and improving the standard iterative algorithm for computing
PageRank.

Underlying the definition of PageRank is the following basicas-
sumption. A link from a pageu ∈ Web to a pagev ∈ Web can
be viewed as evidence thatv is an “important” page. In particu-
lar, the amount of importance conferred onv by u is proportional
to the importance ofu and inversely proportional to the number of
pagesu points to. Since the importance ofu is itself not known,
determining the importance for every pagei ∈ Web requires an
iterative fixed-point computation.

To allow for a more rigorous analysis of the necessary compu-
tation, we next describe an equivalent formulation in termsof a
random walk on the directed Web graphG. Let u → v denote the
existence of an edge fromu to v in G. Letdeg(u) be the outdegree
of pageu in G. Consider a random surfer visiting pageu at timek.
In the next time step, the surfer chooses a nodevi from amongu’s
out-neighbors{v|u → v} uniformly at random. In other words, at
time k + 1, the surfer lands at nodevi ∈ {v|u → v} with proba-
bility 1/deg(u).

The PageRank of a pagei is defined as the probability that at
some particular time stepk > K, the surfer is at pagei. For
sufficiently largeK, and with minor modifications to the random
walk, this probability is unique, illustrated as follows. Consider
the Markov chain induced by the random walk onG, where the
states are given by the nodes inG, and the stochastic transition
matrix describing the transition fromi to j is given byP with
Pij = 1/ deg(i).

ForP to be a valid transition probability matrix, every node must

261

http://crossmark.crossref.org/dialog/?doi=10.1145%2F775152.775190&domain=pdf&date_stamp=2003-05-20


have at least 1 outgoing transition; i.e.,P should have no rows con-
sisting of all zeros. This holds ifG does not have any pages with
outdegree0, which does not hold for the Web graph.P can be
converted into a valid transition matrix by adding a complete set
of outgoing transitions to pages with outdegree0. In other words,
we can define the new matrixP ′ where all states have at least one
outgoing transition in the following way. Letn be the number of
nodes (pages) in the Web graph. Let~v be then-dimensional col-
umn vector representing a uniform probability distribution over all
nodes:

~v = [
1

n
]n×1 (1)

Let ~d be then-dimensional column vector identifying the nodes
with outdegree0:

di =

(

1 if deg(i) = 0,

0 otherwise

Then we constructP ′ as follows:

D = ~d · ~v T

P ′ = P + D

In terms of the random walk, the effect ofD is to modify the tran-
sition probabilities so that a surfer visiting a dangling page (i.e., a
page with no outlinks) randomly jumps to another page in the next
time step, using the distribution given by~v.

By the Ergodic Theorem for Markov chains [9], the Markov
chain defined byP ′ has a unique stationary probability distribution
if P ′ is aperiodic and irreducible; the former holds for the Markov
chain induced by the Web graph. The latter holds iffG is strongly
connected, which is generallynot the case for the Web graph. In
the context of computing PageRank, the standard way of ensuring
this property is to add a new set of complete outgoing transitions,
with small transition probabilities, toall nodes, creating a complete
(and thus strongly connected) transition graph. In matrix notation,
we construct the irreducible Markov matrixP ′′ as follows:

E = [1]n×1 × ~v T

P ′′ = cP ′ + (1 − c)E

In terms of the random walk, the effect ofE is as follows. At each
time step, with probability(1 − c), a surfer visiting any node will
jump to a random Web page (rather than following an outlink).The
destination of the random jump is chosen according to the proba-
bility distribution given in~v. Artificial jumps taken because ofE
are referred to asteleportation.

By redefining the vector~v given in Equation 1 to be nonuniform,
so thatD andE add artificial transitions with nonuniform probabil-
ities, the resultant PageRank vector can be biased to prefercertain
kinds of pages. For this reason, we refer to~v as thepersonalization
vector.

For simplicity and consistency with prior work, the remainder
of the discussion will be in terms of the transpose matrix,A =
(P ′′)T ; i.e., the transition probability distribution for a surfer at
nodei is given by rowi of P ′′, and columni of A.

Note that the edges artificially introduced byD andE never need
to be explicitly materialized, so this construction has no impact on
efficiency or the sparsity of the matrices used in the computations.
In particular, the matrix-vector multiplication~y = A~x can be im-
plemented efficiently using Algorithm 1.

Assuming that the probability distribution over the surfer’s lo-
cation at time0 is given by~x(0), the probability distribution for
the surfer’s location at timek is given by~x(k) = Ak~x(0). The

~y = cP T ~x;
w = ||~x||1 − ||~y||1;
~y = ~y + w~v;

Algorithm 1: Computing~y = A~x

unique stationary distribution of the Markov chain is defined as
limk→∞ x(k), which is equivalent tolimk→∞ Akx(0), and is in-
dependent of the initial distribution~x(0). This is simply the prin-
cipal eigenvector of the matrixA = (P ′′)T , which is exactly the
PageRank vector we would like to compute.

The standard PageRank algorithm computes the principal eigen-
vector by starting with the uniform distribution~x(0) = ~v and com-
puting successive iterates~x(k) = A~x(k−1) until convergence. This
is known as the Power Method, and is discussed in further detail in
Section 3.

While many algorithms have been developed for fast eigenvec-
tor computations, many of them are unsuitable for this problem
because of the size and sparsity of the Web matrix (see Section 7.1
for a discussion of this).

In this paper, we develop a fast eigensolver, based on the Power
Method, that is specifically tailored to the PageRank problem and
Web-scale matrices. This algorithm, called Quadratic Extrapola-
tion, accelerates the convergence of the Power Method by peri-
odically subtracting off estimates of the nonprincipal eigenvectors
from the current iterate~x(k). In Quadratic Extrapolation, we take
advantage of the fact that the first eigenvalue of a Markov matrix
is known to be 1 to compute estimates of the nonprincipal eigen-
vectors using successive iterates of the Power Method. Thisal-
lows seamless integration into the standard PageRank algorithm.
Intuitively, one may think of Quadratic Extrapolation as using suc-
cessive iterates generated by the Power Method to extrapolate the
value of the principal eigenvector.

2. EXPERIMENTAL SETUP
In the following sections, we will be introducing a series ofalgo-

rithms for computing PageRank, and discussing the rate of conver-
gence achieved on realistic datasets. Our experimental setup was
as follows. We used two datasets of different sizes for our exper-
iments. The STANFORD.EDU link graph was generated from a
crawl of thestanford.edu domain created in September 2002
by the Stanford WebBase project. This link graph contains roughly
280,000 nodes, with 3 million links, and requires 12MB of storage.
We used STANFORD.EDU while developing the algorithms, to get
a sense for their performance. For real-world, Web-scale perfor-
mance measurements, we used the LARGEWEB link graph, gen-
erated from a large crawl of the Web that had been created by the
Stanford WebBase project in January 2001 [13]. LARGEWEB con-
tains roughly 80M nodes, with close to a billion links, and requires
3.6GB of storage. Both link graphs had dangling nodes removed
as described in [18]. The graphs are stored using an adjacency list
representation, with pages represented by 4-byte integer identifiers.
On an AMD Athlon 1533MHz machine with a 6-way RAID-5 disk
volume and 2GB of main memory, each application of Algorithm1
on the 80M page LARGEWEB dataset takes roughly 10 minutes.
Given that computing PageRank generally requires up to 100 ap-
plications of Algorithm 1, the need for fast methods is clear.

We measured the relative rates of convergence of the algorithms
that follow using the L1 norm of the residual vector; i.e.,

||Ax(k) − x(k)||1
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function~x(n) = PowerMethod(){
~x(0) = ~v;
k = 1;
repeat

~x(k) = A~x(k−1);
δ = ||x(k) − x(k−1)||1;
k = k + 1;

until δ < ε;
}

Algorithm 2: Power Method

We describe why the L1 residual is an appropriate measure in Sec-
tion 6.

3. POWER METHOD

3.1 Formulation
One way to compute the stationary distribution of a Markov

chain is by explicitly computing the distribution at successive time
steps, using~x(k) = A~x(k−1), until the distribution converges.

This leads us to Algorithm 2, the Power Method for computing
the principal eigenvector ofA. The Power Method is the oldest
method for computing the principal eigenvector of a matrix,and
is at the heart of both the motivation and implementation of the
original PageRank algorithm (in conjunction with Algorithm 1).

The intuition behind the convergence of the power method is as
follows. For simplicity, assume that the start vector~x(0) lies in
the subspace spanned by the eigenvectors ofA.1 Then~x(0) can be
written as a linear combination of the eigenvectors ofA:

~x(0) = ~u1 + α2~u2 + . . . + αm~um (2)

Since we know that the first eigenvalue of a Markov matrix isλ1 =
1,

~x(1) = A~x(0) = ~u1 + α2λ2~u2 + . . . + αmλm~um (3)

and

~x(n) = An~x(0) = ~u1 + α2λ
n
2~u2 + . . . + αmλn

m~um (4)

Sinceλn ≤ . . . ≤ λ2 < 1, A(n)~x(0) approaches~u1 asn grows
large. Therefore, the Power Method converges to the principal
eigenvector of the Markov matrixA.

3.2 Operation Count
A single iteration of the Power Method consists of the single

matrix-vector multiplyA~x(k). Generally, this is anO(n2) opera-
tion. However, if the matrix-vector multiply is performed as in Al-
gorithm 1, the matrixA is so sparse that the matrix-vector multiply
is essentiallyO(n). In particular, the average outdegree of pages
on the Web has been found to be around 7 [16]. On our datasets,
we observed an average of around 8 outlinks per page.

It should be noted that ifλ2 is close to 1, then the power method
is slow to converge, becausen must be large beforeλn

2 is close to
0, and vice versa.

3.3 Results and Discussion
As we show in [12], the eigengap1 − |λ2| for the Web Markov

matrix A is given exactly by the teleport probability1 − c. Thus,
when the teleport probability is large, and the personalization vec-
tor~v is uniform over all pages, the Power Method works reasonably
1This assumption does not affect convergence guarantees.
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Figure 1: Comparison of convergence rate for the standard
Power Method on the LARGEWEB dataset for c = 0.90 and
c = 0.95.

well. However, for a large teleport probability (and with a uniform
personalization vector~v), the effect of link spam is increased, and
pages can achieve unfairly high rankings.2 In the extreme case, for
a teleport probability of1− c = 1, the assignment of rank to pages
becomes uniform. Chakrabarti et al. [5] suggest thatc should be
tuned based on the connectivity of topics on the Web. Such tuning
has generally not been possible, as the convergence of PageRank
slows down dramatically for small values of1− c (i.e., values ofc
close to 1).

In Figure 1, we show the convergence on the LARGEWEBdataset
of the Power Method forc ∈ {0.90, 0.95} using a uniform~v. Note
that increasingc slows down convergence. Since each iteration of
the Power Method takes 10 minutes, computing 100 iterationsre-
quires over 16 hours. As the full Web is estimated to contain over
two billion static pages, using the Power Method on Web graphs
close to the size of the Web would require several days of compu-
tation.

In the next sections, we describe how to remove the error com-
ponents ofx(k) along the direction of~u2 and~u3, thus increasing
the effectiveness of Power Method iterations.

4. AITKEN EXTRAPOLATION

4.1 Formulation
We begin by introducing an algorithm which we shall call Aitken

Extrapolation. We develop Aitken Extrapolation as follows. We
assume that the iterate~x(k−2) can be expressed as a linear com-
bination of the first two eigenvectors. This assumption allows us
to solve for the principal eigenvector~u1 in closed form using the
successive iterates~x(k−2), . . . , ~x(k).

Of course,~x(k−2) can only be approximated as a linear combi-
nation of the first two eigenvectors, so the~u1 that we compute is
only an estimate of the true~u1. However, it can be seen from sec-
tion 3.1 that this approximation becomes increasingly accurate as
k becomes larger.

We begin our formulation of Aitken Extrapolation by assuming
that ~x(k−2) can be expressed as a linear combination of the first
two eigenvectors.

2A high teleport probability means that every page is given a fixed “bonus”
rank. Link spammers can make use of this bonus to generate local structures
to inflate the importance of certain pages.
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~x(k−2) = ~u1 + α2~u2 (5)

Since the first eigenvalueλ1 of a Markov matrix is1, we can write
the next two iterates as:

~x(k−1) = A~x(k−2) = ~u1 + α2λ2~u2 (6)

~x(k) = A~x(k−1) = ~u1 + α2λ
2
2~u2 (7)

Now, let us define

gi = (x
(k−1)
i − x

(k−2)
i )2 (8)

hi = x
(k)
i − 2x

(k−1)
i + x

(k−2)
i (9)

wherexi represents theith component of the vector~x. Doing sim-
ple algebra using equations 6 and 7 gives:

gi = α2
2(λ2 − 1)2(u2)

2
i (10)

hi = α2(λ2 − 1)2(u2)i (11)

Now, let us definefi as the quotientgi/hi:

fi =
gi

hi

=
α2

2(λ2 − 1)2(u2)
2
i

α2(λ2 − 1)2(u2)i

(12)

= α2(u2)i (13)

Therefore,

~f = α2~u2 (14)

Hence, from equation 5, we have a closed-form solution for~u1:

~u1 = ~x(k−2) − α2~u2 = ~x(k−2) − ~f (15)

However, since this solution is based on the assumption that~x(k−2)

can be written as a linear combination of~u1 and~u2, equation 15
gives only an approximation to~u1. Algorithm 3 and Algorithm 4
show how to use Aitken Extrapolation in conjunction with thePower
Method to get consistently better estimates of~u1.

Aitken Extrapolation is equivalent to applying the well-known
Aitken∆2 method for accelerating linearly convergent sequences [1]
to each component of the iterate~x(k−2). What is novel here is this
derivation of Aitken acceleration, and the proof that Aitken acceler-
ation computes the principal eigenvector of a Markov matrixin one
step under the assumption that the power-iteration estimate~x(k−2)

can be expressed as a linear combination of the first two eigenvec-
tors.

As a sidenote, let us briefly develop a related method. Rather
than using equation 8, let us definegi alternatively as:

gi = (x
(k−1)
i − x

(k−2)
i )(x

(k)
i − x

(k−1)
i ) = α2

2λ2(λ2 − 1)2(u2)
2
i

We defineh as in equation 9, andfi now becomes

fi =
gi

hi

=
α2

2λ2(λ2 − 1)2(u2)
2
i

α2(λ2 − 1)2(u2)i

= α2λ2(u2)i

By equation 6,

~u1 = x(k−1) − α2λ2~u2 = ~x(k−1) − ~f

Again, this is an approximation to~u1, since it’s based on the as-
sumption that~x(k−2) can be expressed as a linear combination of
~u1 and~u2. What is interesting here is that this is equivalent to
performing a second-order epsilon acceleration algorithm[22] on
each component of the iterate~x(k−2). For this reason, we call this
algorithm Epsilon Extrapolation.

function~x∗ = Aitken(~x(k−2), ~x(k−1), ~x(k)) {
for i = 1 : n do

gi = (x
(k−1)
i − x

(k−2)
i )2 ;

hi = x
(k)
i − 2x

(k−1)
i + x

(k−2)
i ;

x∗

i = x
(k)
i − gi/hi;

end
}

Algorithm 3: Aitken Extrapolation

function~x(n) = AitkenPowerMethod() {
~x(0) = ~v;
k = 1;
repeat

~x(k) = A~x(k−1);
δ = ||x(k) − x(k−1)||1;
periodically,~x(k) = Aitken(~x(k−2), ~x(k−1), ~x(k));
k = k + 1;

until δ < ε;
}

Algorithm 4: Power Method with Aitken Extrapolation

4.2 Operation Count
In order for an extrapolation method such as Aitken Extrapola-

tion or Epsilon Extrapolation to be useful, the overhead should be
minimal. By overhead, we mean any costs in addition to the cost of
applying Algorithm 1 to generate iterates. It is clear from inspec-
tion that the operation count of the loop in Algorithm 3 isO(n),
wheren is the number of pages on the Web. The operation count
of one extrapolation step is less than the operation count ofa sin-
gle iteration of the Power Method, and since Aitken Extrapolation
may be applied only periodically, we say that Aitken Extrapolation
has minimal overhead. In our implementation, the additional cost
of each application of Aitken Extrapolation was negligible– about
1% of the cost of a single iteration of the Power Method (i.e.,1%
of the cost of Algorithm 1).

4.3 Experimental Results
In Figure 2, we show the convergence of the Power Method

with Aitken Extrapolation applied once at the 10th iteration, com-
pared to the convergence of the unaccelerated Power Method for
the STANFORD.EDU dataset. Thex-axis denotes the number of
times a multiplicationA~x occurred; i.e., the number of times Al-
gorithm 1 was needed. Note that there is a spike at the acceleration
step, but speedup occurs nevertheless. This spike is causedby the
poor approximation foru2.

Forc = 0.99, Aitken Extrapolation takes 38% less time to reach
an iterate with a residual of0.01. However, after this initial speedup,
the convergence rate for Aitken slows down, so that to reach an it-
erate with a residual of0.002, the time savings drops to 13%. For
lower values ofc, Aitken provided much less benefit. Since there
is a spike in the residual graph, if Aitken Extrapolation is applied
too often, the power iterations will not converge. In experiments,
Epsilon Extrapolation performed similarly to Aitken Extrapolation.

4.4 Discussion
In this section, we presented Aitken Extrapolation, and a closely

related method called Epsilon Extrapolation. Aitken Extrapolation
is equivalent to applying the well-known Aitken∆2 method [1] to
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Figure 2: Comparison of convergence rate for unacceler-
ated Power Method and Aitken Extrapolation on the STAN-
FORD.EDU dataset, for c = 0.99. Extrapolation was applied
at the 10th iteration.

each component of the iterate~x(k−2), and Epsilon Extrapolation is
equivalent to applying a second-order epsilon acceleration method
to each component of the iterate~x(k−2) [22]. What is novel here
is this derivation of these methods, and the proof that thesemeth-
ods compute the principal eigenvector of a Markov matrix in one
step under the assumption that the power-iteration estimate~x(k−2)

can be expressed as a linear combination of the first two eigenvec-
tors. Furthermore, these methods have not been used thus farto
accelerate eigenvector computations.

These methods are very different from standard fast eigensolvers,
which generally rely strongly on matrix factorizations or matrix
inversions. Standard fast eigensolvers do not work well forthe
PageRank problem, since the web hyperlink matrix is so largeand
sparse. For problems where the matrix is small enough for an effi-
cient inversion, standard eigensolvers such as inverse iteration are
likely to be faster than these methods. The Aitken and Epsilon Ex-
trapolation methods take advantage of the fact that the firsteigen-
value of the Markov hyperlink matrix is 1 to find an approximation
to the principal eigenvector.

In the next section, we present Quadratic Extrapolation, which
assumes the iterate can be expressed as a linear combinationof the
first threeeigenvectors, and solves for~u1 in closed form under this
assumption. As we shall soon discuss, the Quadratic Extrapolation
step is simply a linear combination of successive iterates,and thus
does not produce spikes in the residual.

5. QUADRATIC EXTRAPOLATION

5.1 Formulation
We develop the Quadratic Extrapolation algorithm as follows.

We assume that the Markov matrixA has only 3 eigenvectors, and
that the iterate~x(k−3) can be expressed as a linear combination of
these 3 eigenvectors. These assumptions allow us to solve for the
principal eigenvector~u1 in closed form using the successive iterates
~x(k−3), . . . , ~x(k).

Of course,A has more than 3 eigenvectors, and~x(k−3) can only
be approximated as a linear combination of the first three eigenvec-
tors. Therefore, the~u1 that we compute in this algorithm is only an
estimate for the true~u1. We show empirically that this estimate is
a better estimate to~u1 than the iterate~x(k−3), and that our estimate
becomes closer to the true value of~u1 ask becomes larger. In Sec-
tion 5.3 we show that by periodically applying Quadratic Extrapo-

lation to the successive iterates computed in PageRank, forvalues
of c close to 1, we can speed up the convergence of PageRank by a
factor of over 3.

We begin our formulation of Quadratic Extrapolation by assum-
ing thatA has only three eigenvectors~u1, . . . , ~u3 and approximat-
ing ~x(k−3) as a linear combination of these three eigenvectors.

~x(k−3) = ~u1 + α2~u2 + α3~u3 (16)

We then define the successive iterates

~x(k−2) = A~x(k−3) (17)

~x(k−1) = A~x(k−2) (18)

~x(k) = A~x(k−1) (19)

Since we assumeA has 3 eigenvectors, the characteristic polyno-
mial pA(λ) is given by:

pA(λ) = γ0 + γ1λ + γ2λ
2 + γ3λ

3 (20)

A is a Markov matrix, so we know that the first eigenvalueλ1 =
1. The eigenvalues ofA are also the zeros of the characteristic
polynomialpA(λ). Therefore,

pA(1) = 0 ⇒ γ0 + γ1 + γ2 + γ3 = 0 (21)

The Cayley-Hamilton Theorem states that any matrixA satisfies
it’s own characteristic polynomialpA(A) = 0 [8]. Therefore, by
the Cayley-Hamilton Theorem, for any vectorz in R

n,

pA(A)z = 0 ⇒ [γ0I + γ1A + γ2A
2 + γ3A

3]z = 0 (22)

Lettingz = ~x(k−3),

[γ0I + γ1A + γ2A
2 + γ3A

3]~x(k−3) = 0 (23)

From equations 17–19,

γ0~x
(k−3) + γ1~x

(k−2) + γ2~x
(k−1) + γ3~x

(k) = 0 (24)

From equation 21,

~x(k−3)(−γ1 − γ2 − γ3) + γ1~x
(k−2)+

γ2~x
(k−1) + γ3~x

(k) = 0 (25)

We may rewrite this as,

(~x(k−2) − ~x(k−3))γ1 + (~x(k−1) − ~x(k−3))γ2+

(~x(k) − ~x(k−3))γ3 = 0 (26)

Let us make the following definitions:

~y(k−2) = ~x(k−2) − ~x(k−3) (27)

~y(k−1) = ~x(k−1) − ~x(k−3) (28)

~y(k) = ~x(k) − ~x(k−3) (29)

We can now write equation 26 in matrix notation:
`

~y(k−2) ~y(k−1) ~y(k)
´

~γ = 0 (30)

We now wish to solve for~γ. Since we’re not interested in the trivial
solution~γ = 0, we constrain the leading term of the characteristic
polynomialγ3:

γ3 = 1 (31)

We may do this because constraining a single coefficient of the
polynomial does not affect the zeros.3 Equation 30 is therefore
3i.e., equation 31 fixes a scaling for~γ.
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function~x∗ = QuadraticExtrapolation(~x(k−3), . . . , ~x(k)) {
for j = k − 2 : k do

~y(j) = ~x(j) − ~x(k−3);
end
Y =

`

~y(k−2) ~y(k−1)
´

;
γ3 = 1;
„

γ1

γ2

«

= −Y +~y(k);

γ0 = −(γ1 + γ2 + γ3);
β0 = γ1 + γ2 + γ3 ;
β1 = γ2 + γ3 ;
β2 = γ3 ;
~x∗ = β0~x

(k−2) + β1~x
(k−1) + β2~x

(k);
}

Algorithm 5: Quadratic Extrapolation

written:

`

~y(k−2) ~y(k−1)
´

„

γ1

γ2

«

= −~y(k) (32)

This is an overdetermined system, so we solve the corresponding
least-squares problem.

„

γ1

γ2

«

= Y +~y(k) (33)

whereY + is the pseudoinverse of the matrixY =
“

~y(k−2) ~y(k−1)
”

.

Now, equations 31, 33, and 21 completely determine the coeffi-
cients of the characteristic polynomialpA(λ) (equation 20).

We may now dividepA(λ) by λ−1 to get the polynomialqA(λ),
whose roots areλ2 andλ3, the second two eigenvalues ofA.

qA(λ) =
γ0 + γ1λ + γ2λ

2 + γ3λ
3

λ − 1
= β0 + β1λ + β2λ

2 (34)

Simple polynomial division gives the following values forβ0, β1,
andβ2:

β0 = γ1 + γ2 + γ3 (35)

β1 = γ2 + γ3 (36)

β2 = γ3 (37)

Again, by the Cayley-Hamilton Theorem, ifz is any vector in
R

n,

qA(A)z = ~u1 (38)

where~u1 is the eigenvector ofA corresponding to eigenvalue 1 (the
principal eigenvector). Lettingz = ~x(k−2),

~u1 = qA(A)~x(k−2) = [β0I + β1A + β2A
2]~x(k−2) (39)

From equations 17–19, we get a closed form solution for~u1:

~u1 = β0~x
(k−2) + β1~x

(k−1) + β2~x
(k) (40)

However, since this solution is based on the assumption thatA has
only 3 eigenvectors, equation 40 gives only an approximation to
~u1.

Algorithms 5 and 6 show how to use Quadratic Extrapolation
in conjunction with the Power Method to get consistently better
estimates of~u1.

function~x(n) = QuadraticPowerMethod() {
~x(0) = ~v;
k = 1;
repeat

~x(k) = A~x(k−1);
δ = ||x(k) − x(k−1)||1;
periodically,

~x(k) = QuadraticExtrapolation(~x(k−3), . . . , ~x(k));
k = k + 1;

until δ < ε;
}

Algorithm 6: Power Method with Quadratic Extrapolation

1. Compute the reducedQR factorizationY = QR using 2
steps of Gram-Schmidt.
2. Compute the vector−QT y(k).
3. Solve the upper triangular system:

R

„

γ1

γ2

«

= −QT y(k)

for

„

γ1

γ2

«

using back substitution.

Algorithm 7: Using Gram-Schmidt to solve forγ1 andγ2.

5.2 Operation Count
The overhead in performing the extrapolation shown in Algo-

rithm 5 comes primarily from the least-squares computationof γ1

andγ2:
„

γ1

γ2

«

= −Y +~y(k)

It is clear that the other steps in this algorithm are eitherO(1) or
O(n) operations.

SinceY is ann× 2 matrix, we can do the least-squares solution
cheaply in just 2 iterations of the Gram-Schmidt algorithm [21].
Therefore,γ1 andγ2 can be computed inO(n) operations. While
a presentation of Gram-Schmidt is outside of the scope of this
paper, we show in Algorithm 7 how to apply Gram-Schmidt to
solve for[γ1γ2]

T in O(n) operations. Since the extrapolation step
is on the order of a single iteration of the Power Method, and
since Quadratic Extrapolation is applied only periodically during
the Power Method, we say that Quadratic Extrapolation has mini-
mal overhead. In our experimental setup, the overhead of a single
application of Quadratic Extrapolation is half the cost of astandard
power iteration (i.e., half the cost of Algorithm 1). This number in-
cludes the cost of storing on disk the intermediate data required by
Quadratic Extrapolation (such as the previous iterates), since they
may not fit in main memory.

5.3 Experimental Results
Of the algorithms we have discussed for accelerating the conver-

gence of PageRank, Quadratic Extrapolation performs the best em-
pirically. In particular, Quadratic Extrapolation considerably im-
proves convergence relative to the Power Method when the damp-
ing factorc is close to 1. We measured the performance of Quadratic
Extrapolation under various scenarios on the LARGEWEB dataset.
Figure 3 shows the rates of convergence whenc = 0.90; after
factoring in overhead, Quadratic Extrapolation reduces the time
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Figure 3: Comparison of convergence rates for Power Method
and Quadratic Extrapolation on LARGEWEB for c = 0.90.
Quadratic Extrapolation was applied the first 5 times that three
successive power iterates were available.
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Figure 4: Comparison of convergence rates for Power Method
and Quadratic Extrapolation on LARGEWEB for c = 0.95.
Quadratic Extrapolation was applied 5 times.

needed to reach a residual of0.001 by 23%.4 Figure 4 shows the
rates of convergence whenc = 0.95; in this case, Quadratic Ex-
trapolation speeds up convergence more significantly, saving 31%
in the time needed to reach a residual of0.001. Finally, in the case
wherec = 0.99, the speedup is more dramatic. Figure 5 shows
the rates of convergence of the Power Method and Quadratic Ex-
trapolation forc = 0.99. Because the Power Method is so slow
to converge in this case, we plot the curves until a residual of 0.01
is reached. The use of extrapolation saves 69% in time neededto
reach a residual of0.01; i.e., the unaccelerated Power Method took
over 3 times as long as the Quadratic Extrapolation method toreach
the desired residual. The wallclock times for each of these scenar-
ios are summarized in Figure 6.

Figure 7 shows the convergence for the Power Method, Aitken
Extrapolation, and Quadratic Extrapolation on the STANFORD.EDU
dataset; each method was carried out to 200 iterations. To reach a
residual of0.01, Quadratic Extrapolation saved 59% in time over
the Power Method, as opposed to a 38% savings for Aitken Extrap-
olation.

An important observation about Quadratic Extrapolation isthat

4The time savings we give factor in the overhead of applying extrapolation,
and represent “wall-clock” time savings.
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Figure 5: Comparison of convergence rates for Power Method
and Quadratic Extrapolation on LARGEWEB when c = 0.99.
Quadratic Extrapolation was applied all 11 times possible.
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Figure 6: Comparison of wallclock times taken by Power
Method and Quadratic Extrapolation on LARGEWEB for c =
{0.90, 0.95, 0.99}. For c = {0.90, 0.95}, the residual tolerance
ε was set to 0.001, and forc = 0.99, it was set to 0.01.

it does not necessarily need to be applied too often to achieve max-
imum benefit. By contracting the error in the current iteratealong
the direction of the second and third eigenvectors, Quadratic Ex-
trapolation actually enhances the convergence of future applica-
tions of the standard Power Method. The Power Method, as dis-
cussed previously, is very effective in annihilating errorcompo-
nents of the iterate in directions along eigenvectors with small eigen-
values. By subtracting off approximations to the second andthird
eigenvectors, Quadratic Extrapolation leaves error components pri-
marily along the smaller eigenvectors, which the Power Method is
better equipped to eliminate.

For instance, in Figure 8, we plot the convergence when Quadratic
Extrapolation is applied 5 times compared with when it is applied
as often as possible (in this case, 14 times), to achieve a residual
of 0.001. Note that the additional applications of Quadratic Ex-
trapolation do not lead to much further improvement. In fact, once
we factor in the 0.5 iteration-cost of each application of Quadratic
Extrapolation, the case where it was applied 5 times ends up being
faster.
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Figure 7: Comparison of convergence rates for Power Method,
Aitken Extrapolation, and Quadratic Extrapolation on the
STANFORD.EDU dataset for c = 0.99. Aitken Extrapolation
was applied at the 10th iteration, Quadratic Extrapolation was
applied every 15th iteration. Quadratic Extrapolation per-
forms the best by a considerable degree. Aitken suffers from
a large spike in the residual when first applied.

5.4 Discussion
Like Aitken and Epsilon Extrapolation, Quadratic Extrapolation

makes the assumption that an iterate can be expressed as a linear
combination of a subset of the eigenvectors ofA in order to find
an approximation to the principal eigenvector ofA. In Aitken and
Epsilon Extrapolation, we assume that~x(k−2) can be written as a
linear combination of the first two eigenvectors, and in Quadratic
Extrapolation, we assume that~x(k−3) can be written as a linear
combination of the first three eigenvectors. Since the assumption
made in Quadratic Extrapolation is closer to reality, the resulting
approximations are closer to the true value of the principaleigen-
vector ofA.

While Aitken and Epsilon Extrapolation are logical extensions of
existing acceleration algorithms, Quadratic Extrapolation is com-
pletely novel. Furthermore, all of these algorithms are general pur-
pose. That is, they can be used to compute the principal eigenvector
of any large, sparse Markov matrix, not just the web graph. They
should be useful in any situation where the size and sparsityof the
matrix is such that a QR factorization is prohibitively expensive.

One thing that is interesting to note is that since acceleration
may be applied periodically during any iterative process that gener-
ates iterates~x(k) that converge to the principal eigenvector~u1, it is
straightforward to use Quadratic Extrapolation in conjunction with
other methods for accelerating PageRank, such as Gauss-Seidel [8,
2].

6. MEASURES OF CONVERGENCE
In this section, we present empirical results demonstrating the

suitability of the L1 residual, even in the context of measuring con-
vergence ofinduced document rankings. In measuring the con-
vergence of the PageRank vector, prior work has usually relied on
δk = ||Ax(k) − x(k)||p, the Lp norm of the residual vector, for
p = 1 or p = 2, as an indicator of convergence. Given the intended
application, we might expect that a better measure of convergence
is the distance, using an appropriate measure of distance, between
the rank orders for query results induced byAx(k) andx(k). We
use two measures of distance for rank orders, both based on the the
Kendall’s-τ rank correlation measure: theKDist measure, defined
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Figure 8: Comparison of convergence rates for Quadratic Ex-
trapolation on LARGEWEB for c = 0.95, under two scenarios:
Extrapolation was applied the first 5 possible times in one case,
and all 14 possible times in the other. Applying it only 5 times
achieves nearly the same benefit in this case.

below, and theKmin measure, introduced by Fagin et al. in [7]. To
see if the residual is a “good” measure of convergence, we com-
pared it to theKDist andKmin of rankings generated byAx(k) and
x(k).

We show empirically that in the case of PageRank computa-
tions, the L1 residualδk is closely correlated with theKDist and
Kmin distances between query results generated using the valuesin
Ax(k) andx(k).

We define the distance measure,KDist as follows. Consider two
partially ordered lists of URLs,τ1 andτ2, each of lengthk. Let U
be the union of the URLs inτ1 andτ2. If ρ1 is U − τ1, then letτ ′

1

be the extension ofτ1, whereτ ′

1 containsρ1 appearing after all the
URLs in τ1.5 We extendτ2 analogously to yieldτ ′

2. KDist is then
defined as:

KDist(τ1, τ2) =

|{(u, v) : τ ′

1, τ
′

2 disagree on order of(u, v), u 6= v}|

(|U |)(|U | − 1)
(41)

In other words,KDist(τ1, τ2) is the probability thatτ ′

1 andτ ′

2 dis-
agree6 on the relative ordering of a randomly selected pair of dis-
tinct nodes(u, v) ∈ U × U .

To measure the convergence of PageRank iterations in terms of
induced rank orders, we measured theKDist distance between
the induced rankings for the top 100 results, averaged across 27
test queries, using successive power iterates for the LARGEWEB

dataset, with the damping factorc set to 0.9.7 The average residuals
using theKDist, Kmin, and L1 measures are plotted in Figure 9.8

Surprisingly, the L1 residual is almost perfectly correlated with
KDist, and is closely correlated withKmin.9 A rigorous explana-
tion for the close match between the L1 residual and the Kendall’s
τ based residuals is an interesting avenue of future investigation.

5The URLs inρ are placed with thesameordinal rank at the end ofτ .
6A pair ordered in one list and tied in the other is considered adisagreement.
7Computing Kendall’sτ over the complete ordering of all of LARGEWEB
is expensive; instead we opt to computeKDist andKmin over query results.
8The L1 residualδk is normalized so thatδ0 is 1.
9We emphasize that we have shown close agreement between L1 and
KDist for measuring residuals, not for distances between arbitrary vectors.
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Figure 9: Comparison of the L1 residual vs.KDist andKmin for
PageRank iterates. Note that the two curves nearly perfectly
overlap, suggesting that in the case of PageRank, the easilycal-
culated L1 residual is a good measure for the convergence of
query-result rankings.

7. RELATED WORK

7.1 Fast Eigenvector Computation
The field of numerical linear algebra is a mature field, and many

algorithms have been developed for fast eigenvector computations.
However, many of these algorithms are unsuitable for this problem,
because they require matrix inversions or matrix decompositions
that are prohibitively expensive (both in terms of size and space) for
a matrix of the size and sparsity of the Web-link matrix. For exam-
ple, inverse iterationwill find the principal eigenvector ofA in one
iteration, since we know the first eigenvalue. However, inverse iter-
ation requires the inversion ofA, which is anO(n3) operation. The
QR Algorithm with shiftsis also a standard fast method for solving
nonsymmetric eigenvalue problems. However, the QR Algorithm
requires a QR factorization ofA at each iteration, which is also an
O(n3) operation. TheArnoldi algorithm is also often used for non-
symmetric eigenvalue problems. However, the strength of Arnoldi
is that it quickly computes estimates to the first few eigenvalues.
Once it has a good estimate of the eigenvalues, it uses inverse it-
eration to find the corresponding eigenvectors. In the PageRank
problem, we know that the first eigenvalue ofA is 1, sinceA is a
Markov matrix, so we don’t need Arnoldi to give us an estimateof
λ1. For a comprehensive review of these methods, see [8].

However, there is a class of methods from numerical linear al-
gebra that are useful for this problem. We may rewrite the eigen-
problemA~x = ~x as the linear system of equations:(I −A)~x = 0,
and use the classical iterative methods for linear systems:Jacobi,
Gauss-Seidel, and Successive Overrelaxation (SOR). For the ma-
trix A in the PageRank problem, the Jacobi method is equivalent
to the Power method, but Gauss-Seidel is guaranteed to be faster.
This has been shown empirically for the PageRank problem [2].
Note, however, that to use Gauss-Seidel, we would have to sort the
adjacency-list representation of the Web graph, so that back-links
for pages, rather than forward-links, are stored consecutively. The
myriad of multigrid methods are also applicable to this problem.
For a review of multigrid methods, see [17].

7.2 PageRank
Seminal algorithms for graph analysis for Web-search were in-

troduced by Page et al. [18] (PageRank) and Kleinberg [15] (HITS).
Much additional work has been done on improving these algo-

rithms and extending them to new search and text mining tasks[4,
6, 19, 3, 20, 11]. More applicable to our work are several pa-
pers which discuss the computation of PageRank itself [10, 2, 14].
Haveliwala [10] explores memory-efficient computation, and sug-
gests using induced orderings, rather than residuals, to measure
convergence. Arasu et al. [2] uses the Gauss-Seidel method to
speed up convergence, and looks at possible speed-ups by exploit-
ing structural properties of the Web graph. Jeh and Widom [14]
explore the use of dynamic programming to compute a large num-
ber of personalized PageRank vectors simultaneously. Our work is
the first to exploit extrapolation techniques specifically designed to
speed up the convergence of PageRank, with very little overhead.

8. CONCLUSION
Web search has become an integral part of modern information

access, posing many interesting challenges in developing effective
and efficient strategies for ranking search results. One of the most
well-known Web-specific ranking algorithms is PageRank – a tech-
nique for computing the authoritativeness of pages using the hy-
perlink graph of the Web. Although PageRank is largely an off-
line computation, performed while preprocessing and indexing a
Web crawl before any queries have been issued, it has become in-
creasingly desirable to speed up this computation. Rapidlygrowing
crawl repositories, increasing crawl frequencies, and thedesire to
generate multiple topic-based PageRank vectors for each crawl are
all motivating factors for our work in speeding up PageRank com-
putation.

Quadratic Extrapolation is an implementationally simple tech-
nique that requires little additional infrastructure to integrate into
the standard Power Method. No sorting or modifications of the
massive Web graph are required. Additionally, the extrapolation
step need only be applied periodically to enhance the convergence
of PageRank. In particular, Quadratic Extrapolation worksby elim-
inating the bottleneck for the Power Method, namely the second
and third eigenvector components in the current iterate, thus boost-
ing the effectiveness of the simple Power Method itself.
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