
uninformed graph
search

graphs express connections between data

A social network:

Each vertex stores some data. Each edge connects a pair of vertices.

(The words node and vertex are used interchangeably.)

If there are n vertices, there may be up to n (n - 1) edges.

questions we could ask

• Does Cathy know Gayle? (Yes, there is an edge.)

• Is there a pathway between Harry and Emily? (Same component.)

• What is the shortest path between Harry and Emily? (H to J to E)

• Who is the most well-connected person? (Emily, vertex degree 5.)

• Largest group in which each knows everyone else (clique)?

graph models: social networks

graph models: social networks

graph models: hierarchies

graph models: physical maps

graph models: genealogy

graph models: the web

(Image from the Opte project.)

graph models: document structure

(Image from dabrook.org.)

(models containership)

graph models: ordering constraints

(Note: directed graph. Example by Tom Cormen.)

Restrictions on the order in which a hockey goalie can get dressed:

graph models: decisions and AI

questions we could ask

• Does Cathy know Gayle? (Yes, there is an edge.)

• Is there a pathway between Harry and Emily? (Same component.)

• What is the shortest path between Harry and Emily? (H to J to E)

• Who is the most well-connected person? (Emily, vertex degree 5.)

• Largest group in which each knows everyone else (clique)?

Food for thought: what are analogous questions for
each of the previous applications?

representing a graph: edge list

[[0,1], [0,6], [0,8], [1,4], [1,6], [1,9], [2,4], [2,6], [3,4], [3,5],
[3,8], [4,5], [4,9], [7,8], [7,9]]

• How long does it take to answer whether two vertices are connected?

• How much memory is required?

representing a graph: adjacency matrix

• How long does it take to answer whether two vertices are connected?

• How much memory is required?

representing a graph: adjacency lists

• How long does it take to answer whether two vertices are connected?

• How much memory is required?

(Our preferred method)

representing a graph: example

what’s in a node?

• some data: name, pixel coordinates:

 tuckNode.name = “Tuck”;
 tuckNode.x = 116;
 tuckNode.y = 487;

• an adjacency list:

 tuckNode.adjacent =
 [“Murdough”, “Buchanan”];

given the name of a node, how do you get the node?

var myNode = graphDict[“Tuck”];
console.log(myNode.name);
console.log(myNode.x);
console.log(myNode.y);

graphDict dictionary indexes nodes using names (strings):

start by experimenting with fetching nodes from graphDict.

given node name, how do you get names of adjacent nodes?

var currentNodeName = “Tuck”;

// Grab the node from the dictionary
var currentNode = graphDict[currentNodeName];

// The node contains the adjacency list:
console.log(currentNode.adjacent);

graphDict dictionary indexes nodes using names (strings):

In this example, currentNode.adjacent contains an array of
strings.

breadth-first search on a graph

given two strings representing the start and goal locations,

what is the shortest connecting sequence of node names?

Example:

a ‘harder’ problem that is easier to solve

given a string for the start, what is the shortest connecting
sequence to every other node?

Cummings

Murdough

Thayer

Tuck

Buchanan

Tuck Dr

Gold Coast

(Note — geometry does not matter.)

breadth-first exploration from Tuck

Start at Tuck. Send minions to claim adjacent nodes.

Cummings

Murdough

Thayer

Tuck

Buchanan

Tuck Dr

Gold Coast

Tuck
Tuck

Cummings

Murdough

Thayer

Tuck

Buchanan

Tuck Dr

Gold Coast

Tuck
Tuck

breadth-first exploration from Tuck

Now that Murdough has been claimed, it starts producing
minions of its own:

Cummings

Murdough

Thayer

Tuck

Buchanan

Tuck Dr

Gold Coast

Tuck
Tuck

Murdough

Murdough

breadth-first exploration from Tuck

Now that Murdough has been claimed, it starts producing
minions of its own:

Notice: Murdough-ians do not reclaim Tuck.

Cummings

Murdough

Thayer

Tuck

Buchanan

Tuck Dr

Gold Coast

Tuck
Tuck

Murdough

Murdough

breadth-first exploration from Tuck

Buchanan was also claimed by Tuck, and starts producing
minions of its own:

Cummings

Murdough

Thayer

Tuck

Buchanan

Tuck Dr

Gold Coast

Tuck
Tuck

Murdough

Murdough

Buchanan

breadth-first exploration from Tuck

Buchanan was also claimed by Tuck, and starts producing
minions of its own:

Notice: Buchanites do not claim Tuck, Murdough, or Thayer
(already claimed). They do claim Tuck Dr.

Cummings

Murdough

Thayer

Tuck

Buchanan

Tuck Dr

Gold Coast

Tuck
Tuck

Murdough

Murdough

Buchanan

breadth-first exploration from Tuck

Thayer starts producing minions:

Continue this process until all nodes have been claimed.

Cummings

Murdough

Thayer

Tuck

Buchanan

Tuck Dr

Gold Coast

Tuck
Tuck

Murdough

Murdough

Buchanan

(start)

Tuck Dr

finding the path with backchaining

What is a fastest way from Goal Coast to Tuck?

Gold Coast was first claimed from Tuck Dr. Tuck Dr was first
claimed by Buchanan. Buchanan was first claimed from Tuck.

Reverse this sequence: Tuck, Buchanan, Tuck Dr, Gold Coast.

Cummings

Murdough

Thayer

Tuck

Buchanan

Tuck Dr

Gold Coast

Tuck
Tuck

Murdough

Murdough

breadth-first search: data structures

• Which node should produce minions next? We keep a queue.

• Which nodes have been reached first (claimed) from where?

We keep a dictionary, visitedFrom.

visitedFrom[“Thayer”] is “Murdough”

breadth-first search: pseudo-code

add starting node name to new queue (e.g., (”Tuck”))

create dictionary visitedFrom and add entry for starting name 

while queue is not empty:

 dequeue current node name from the queue

 get the corresponding node from graphDict

 if the current node is the goal, success,

 backchain

 for each adjacent node name that is not in visitedFrom:

 add node name to queue for future exploration

 mark where node name was reached from in visitedFrom

bfs: data structures example

add start to queue and visitedFrom

Cummings

Murdough

Thayer

Tuck

Buchanan

Tuck Dr

Gold Coast

queue: “Tuck”
visitedFrom: {“Tuck”: “start”}

breadth-first exploration from Tuck

Start at Tuck. Send minions to claim adjacent nodes.

Cummings

Murdough

Thayer

Tuck

Buchanan

Tuck Dr

Gold Coast

Tuck
Tuck

queue: “Murdough”, “Buchanan”
visitedFrom: {“Tuck”: “start”, “Murdough”: “Tuck”, “Buchanan”: “Tuck”}

Cummings

Murdough

Thayer

Tuck

Buchanan

Tuck Dr

Gold Coast

Tuck
Tuck

breadth-first exploration from Tuck
Next, dequeue “Murdough”. Its adjacent node names are “Tuck”,

“Cummings”, and “Thayer”. Since “Tuck” is already in
visitedFrom, just add “Cummings” and “Thayer” to queue and
visitedFrom.

queue: “Buchanan”, “Cummings”, “Thayer”
visitedFrom: {“Tuck”: “start”, “Murdough”: “Tuck”, “Buchanan”: “Tuck”,
 “Cummings”: “Murdough”, “Thayer”: “Murdough”}

Cummings

Murdough

Thayer

Tuck

Buchanan

Tuck Dr

Gold Coast

Tuck
Tuck

Murdough

Murdough

breadth-first exploration from Tuck

Buchanan is next in the queue. It will add Tuck Dr. to queue and

visitedFrom.

queue: “Cummings”, “Thayer”, “Buchanan”
visitedFrom: {“Tuck”: “start”, “Murdough”: “Tuck”, “Buchanan”: “Tuck”,
 “Cummings”: “Murdough”, “Thayer”: “Murdough”, “Tuck Dr.”: “Buchanan”}

Foxes and chickens

(Drop the course if the first homework is crushing.)

• 3 chickens, 3 foxes, 1 boat. Boat can carry 2.

• If at any point, there are more foxes than chickens on

either side, the game ends.

• Give a sequence of actions that takes all across

safely.

agents and search

• An agent begins in some state, the initial or start
state.

• The agent would like to get to some goal state.

• The agent has certain actions available

• The agent knows the results of each action

• The agent might have some preference for "better"

paths

States and nodes are often created “on the fly.”

formal search problems

• A start state

• A `goal_test` function that checks if a state is a goal

state

• A `get_actions` function that finds the legal actions

from some state and a `transition` function that
accepts a state, an action, and returns a new state, or
alternatively, a `get_successors` function that returns
a list of states given a starting states (wrapping
get_actions and transition)

• A path_cost function that gives the cost of a path
between a pair of states.

