
Lecture 1: Greedy Approximation Algorithms

1 Set Cover

Given a universe U of n elements, and a collection of sets {S1, . . . , Sm}, each Si ⊆ U and having
cost c(Si). The set cover problem is to pick a minimum cost collection of the sets which cover all
elements.

Procedure Greedy-SC

1: X denotes the set of uncovered elements and F denotes the set cover picked by the algorithm.
2: Initialize X → U and F → ∅.
3: while X is not ∅ do
4: Let S be the set which minimizes c(S)

|S∩X| .
5: F = F ∪ S. X = X \ S.
6: end while

Analysis. Let F := {S1, . . . , Sr} be the sets cover picked by the algorithm, of total cost alg. Let
{O1, . . . , O`} be the the optimal set cover of cost opt. Also, let us denote the set of uncovered
elements just before iteration i to be Xi. Thus, X1 = U and Xr+1 = ∅. Note that Si ∩Xi, the set
of elements covered at iteration i, is precisely Xi \Xi+1.

Greedy choice tells us for all i ∈ [r], we have

∀j ∈ [`] :
c(Si)
|Si ∩Xi|

≤ c(Oj)
|Oj ∩Xi|

(1)

⇒ c(Si)
|Si ∩Xi|

≤
∑`

j=1 c(Oj)∑`
j=1 |Oj ∩Xi|

≤ opt

|Xi|
(2)

The last inequality follows since Oj ’s form a cover and thus,
⋃`
j=1Oj ∩Xi = Xi. Adding over all i

we get

alg =
r∑
i=1

c(Si) ≤ opt ·
r∑
i=1

|Si ∩Xi|
|Xi|

≤ opt ·
r∑
i=1

|Xi| − |Xi+1|
|Xi|

≤ opt ·
(

1
|U |

+
1

|U | − 1
+ · · ·+ 1

)
≤ opt ·Hn

1

Theorem 1. Procedure Greedy-SC is a Hn-approximation algorithm.

Can we do a better analysis? We now show a slightly different way of analyzing giving us a
better factor. Let k := max |Si| be the size of the largest cardinality set in the collection. We argue
now that the factor can be improved to Hk. To do this we introduce the “charging trick”.

Once again let {S1, . . . , Sr} be the sets picked by our algorithm. Recall that we pick set Si
in iteration i because it minimized α := c(Si)

|Si∩Xi| . For each element j ∈ Si ∩ Xi, that is, each new
element covered by Si, assign a charge αj = α. Do this for every set picked. Observe the following
things: each element gets charged once, and alg =

∑
j∈U αj .

Now pick a set Oi in the optimal set cover. Order the elements of Oi in the order in which they
got covered by the algorithm. What do we know about αj? When this element j was being covered
by our algorithm, we had the choice of picking Oi. Furthermore, none of the elements j, j + 1, . . .
were covered. So, it must be that αj ≤ c(Oi)

|Oi|−j+1 . Thus,
∑

j∈Oi
αj ≤ c(Oi) · H|Oi| ≤ c(Oi) · Hk.

Summing over all Oi’s, we get

alg =
∑
j∈U

αj ≤
∑̀
i=1

∑
j∈Oi

αj ≤ opt ·Hk.

Theorem 2. Procedure Greedy-SC is a Hk-approximation algorithm, where k is the cardinality
of the maximum cardinality set.

Consider now the vertex cover problem. This is a special case of set cover where k = ∆, the
max-degree. Thus, the greedy algorithm which picks the maximum degree vertex, deletes it, and
iterates till all edges are covered is a H∆-approximation.

2 Metric Facility Location

In the facility location problem, we are given a set of facilities F , a set of clients C. Facility
i ∈ F has a cost fi of opening. It costs c(i, j) to connect client j to facility i. Clients can only be
connected to open facilities. The objective is to find a set of facilities to open and connect clients to
open facilities minimizing the total cost. This problem is normally called the uncapacitated facility
location problem or simply UFL, so as to distinguish it from the capacitated facility location
problem where each facility has a capacity which bounds the number of clients it can serve. This is
a harder problem. If the connection costs form a metric, that is, c(i, j) ≤ c(i, j′) + c(j′, i′) + c(i′, j)
for all i, i′ ∈ F and j, j′ ∈ C, then the problem is called the metric UFL. We now give a constant
factor approximation for the metric UFL problem.

2

Procedure Greedy-UFL

1: X denotes the set of facilities opened and D denotes the set of assigned clients. Each client
in D will be assigned a facility in X, and we will maintain this assignment as σ : D → X.

2: Initialize X,D → ∅.
3: while D is not C do
4: Given a facility i, let D′ ⊆ D be the set of clients who are closer to i than their currently

assigned facility. Let δ(D, i) :=
∑

j∈D′(c(σ(j), j)−c(i, j)) denote the reduction in connection
costs if i is opened.

5: Pick a facility i and a set of unassigned clients Y ⊆ C \D so as to minimize

0i∈X · fi +
∑

j∈Y c(i, j)− δ(D, i)
|Y |

where 0i∈X is 0 if i ∈ X, 1 otherwise. {Note if i ∈ X, then δ(D, i) = 0.}
6: X = X ∪ i. D = D ∪ Y . Assign all j ∈ Y ∪D′ to i.
7: end while

Let’s fix some notation. Let X∗ be the set of facilities opened by the optimal algorithm. Let σ∗ be
the assignment of clients to X∗ of the optimal solution. Given a client j, let c∗j := c(σ∗(j), j), and
let cj := c(σ(j), j). We let F ∗ =

∑
i∈X∗ fi and C∗ =

∑
j∈C c

∗
j . Note that opt = F ∗+C∗. Similarly,

let Falg =
∑

i∈X fi and Calg =
∑

j∈C cj . alg = Falg +Calg. We introduce another bit of notation:
Γi and Γ∗i will respectively denote the set of clients assigned to facility i by our and the optimal
algorithm.

We applying the charging idea. Whenever a client j is assigned to a facility for the first time, we
let αj :=

0i∈X ·fi+
P

j∈Y c(i,j)−δ(D,i)
|Y | , where Y is the set of clients being assigned for the first time in

that iteration. Note that j could be re-assigned later on, but we do not modify αj . Observe that,
alg =

∑
j∈C αj .

Pick a facility i∗ in X∗ and let k := |Γ∗i∗ |. Order the clients in Γ∗i∗ in the order they arrive in D.
Consider the iteration at which the jth client is being added. A facility i is chosen along with a
set of clients Y containing j. Let σ′ be the assignment at the beginning of this iteration.

∀` < j : αj ≤ c(σ′(`), `) + c∗` + c∗j (3)

αj ≤
fi∗ + c∗(Γ∗i∗)−

∑
`<j c(σ

′(`), `)
(k − j + 1)

(4)

When j is being added, one possible choice of the algorithm is to connect the singleton j to
σ′(`) for some ` < j. Thus, αj ≤ c(σ′(`), j) ≤ c(σ′(`), `) + c(i∗, `) + c(i∗, j), by metricity (finally
used!). This implies (3) since both j, ` ∈ Γ∗i∗ . Another possible choice of the algorithm is to add
the facility i∗ and the set Y := {` : ` ≥ j}. Furthermore, all the clients ` < j, could be re-
assigned to i∗. (Note that this might be suboptimal, but it is erring in the correct direction). So,

αj ≤
fi∗+

P
`≥j c(i

∗,`)−
P

`<j(c(σ′(`),`)−c(i∗,`))
(k−j+1) which on rearrangement gives (4).

Adding (3) for all ` < j, and (4) gives us kαj ≤
∑

`<j c
∗
` + (j− 1)c∗j + fi∗ + c∗(Γ∗i∗). Adding over

3

all j ∈ Γ∗i∗ gives,

kα(Γ∗i∗) ≤
k∑
j=1

∑
`<j

c∗` +
k∑
j=1

(j − 1)c∗j + k(fi∗ + c∗(Γ∗i∗)

= kfi∗ + (2k − 1)c∗(Γ∗i∗)

Dividing by k and adding over all i∗ ∈ X∗, we get alg = α(C) ≤
∑

i∗∈X∗ α(Γ∗i∗) ≤ F ∗ + 2C∗.

Theorem 3. Procedure Greedy-UFL is a 2-approximation.

2.1 Improving the factor with greedy augmentation

This was not covered in the class. An algorithm is a (λ, µ) approximation to UFL if alg ≤
λF ∗ + µC∗. Note that the above is a (1, 2) approximation. The following theorem shows how to
“balance” the two out to get a better factor.

1. Input: Algorithm A which is a (λ, µ) approximation; parameter α ≥ 1.

2. Scale up all facility opening costs by a factor of α.

3. Run A to open a set of facilities X0. σ0 be the assignment of clients to nearest facility in X0.
Scale down facility costs back to original. Initialize X to X0.

4. While there exists facility i ∈ F \X such that fi ≤ δ(C, i)

Add facility i which minimizes fi

δ(C,i) , to X.

5. Return X as the set of opened facilities. Connect every client to the nearest open facility.

Theorem 4. The above algorithm is a (λ+ ln(α), 1 + µ−1
α) approximation to UFL.

Proof. Let F0 and C0 be the facility opening and connection costs of X0 and σ0, and let Falg and
Calg be the same for X and σ. Note that

αF0 + C0 ≤ λαF ∗ + µC∗ (5)

Let the new facilities picked be {1, . . . , t}, and let Xi := X ∪ {1, . . . , i}. Thus, X = Xt. σi be the
assignment of clients to the nearest facility in Xi. Let Ci be the connection costs of σi.

Observe the following things. Ci’s are decreasing and Ci−1 − Ci = δ(C, i) for 1 ≤ i ≤ t. Also,
for each 1 ≤ i ≤ t and for each i∗ ∈ X∗ \X, fi

δ(C,i) ≤
fi∗

δ(C,i∗) . Thus,

fi
δ(C, i)

≤
∑

i∗∈X∗\X fi∗∑
i∗∈X∗\X δ(C, i∗)

≤ F ∗

Ci−1 − C∗
.

Let’s do a technical gimmick here: since we pick facilities from 1 to t, only if the total cost of the
algorithm decreases (since fi ≤ δ(C, i)), the cost of our algorithm when we open X = Xt is no
more than the cost of the algorithm when we open X`, for ` ≤ t. Let ` be the smallest iteration at
which C` ≤ F ∗ + C∗. That is, C`−1 > F ∗ + C∗. Henceforth we analyze the cost of the algorithm
which opens only X`.

4

The above inequality gives us

∑̀
i=1

fi ≤ F ∗
∑̀
i=1

Ci−1 − Ci
Ci−1 − C∗

The summation on the RHS is familiar – we saw it in our first analysis of set cover. Here’s a slightly
different way of bounding the expression on the right. First we break the summation in the RHS
as follows:

∑̀
i=1

Ci−1 − Ci
Ci−1 − C∗

=
`−1∑
i=1

Ci−1 − Ci
Ci−1 − C∗

+
C`−1 − (F ∗ + C∗)

C`−1 − C∗
+

(F ∗ + C∗)− C`
C`−1 − C∗

Now the two summands on the above RHS can be upper bounded by the integration

`−1∑
i=1

Ci−1 − Ci
Ci−1 − C∗

+
C`−1 − (F ∗ + C∗)

C`−1 − C∗
≤

∫ C0−C∗

F ∗+C∗

dx

(x− C∗)

Putting everything together and using C`−1 > F ∗ + C∗,

∑̀
i=1

fi ≤ F ∗ ln
(
C0 − C∗

F ∗

)
+ (F ∗ + C∗ − C`)

Since Falg = F0 +
∑`

i=1 fi and Calg = C`, we get

alg ≤ F0 + F ∗ ln
(
C0 − C∗

F ∗

)
+ (F ∗ + C∗) (6)

Let β = C0−C∗
F ∗ . Using (5), we get that F0 = F ∗

(
λ− β

α

)
+ C∗

(
µ−1
α

)
. So,

alg ≤ F ∗
(
λ+ 1 + ln(β)− β

α

)
+ C∗

(
1 +

µ− 1
α

)
The proof completes by noting the maximum value of the coefficient of F ∗ is obtained when β =
α.

Now using the (1, 2) approximation described above, we get the following

Corollary 1. There is a 1.57-approximation for metric UFL.

5

	Set Cover
	Metric Facility Location
	Improving the factor with greedy augmentation

