
Lecture 6: The Dual LP and Approximation Algorithms

Every linear program has a dual linear program. For this discussion, let’s consider the following
minimization LP. A is an n×m matrix.

min c · x (1)
subject to Ax ≥ b

x ≥ 0

Then the dual to the above program is the following. In the following, A′ is the transpose of A.

max b · y (2)
subject to A′y ≤ c

y ≥ 0

The original program is called the primal linear program. In the dual, there is a variable yi
corresponding to every (non-trivial) constraint in the primal. Furthermore, every variable in the
primal leads to a constraint in the dual. The following fact is called weak duality.

Fact 1 (Weak Duality). Let (x, y) be two feasible solutions to (1) and (2), respectively. Then
b · y ≤ c · x.

Proof. The proof is the following where the inequalities follow from feasibility
b · y =

∑n
i=1 yibi ≤

∑n
i=1 yi

∑m
j=1Aijxj =

∑m
j=1 xj

∑n
i=1Aijyi ≤

∑m
j=1 xjcj = c · x

Thus, any feasible solution to the dual LP implies a lower bound on the primal optimum, which
in turn is a lower bound on the optimum. The following theorem, called strong duality, tells us
that the best such possible lower bound is in fact the value of the primal LP. That is, the dual
optimum equals the primal optimum. This fact is one of the most important theorems of linear
optimization. We’ll not cover the proof in this course, but it’s not difficult and is given in the linear
programming reference mentioned in the course webpage.

Theorem 1. The optimum value of (1) equals the optimum value of (2).

The following corollary is going to be useful. Let (x∗, y∗) be any pair of optimal solutions to
the primal and the dual. The following are the complementary slackness conditions.

Fact 2. (1) x∗ · (A′y∗ − c) = 0; that is, for all 1 ≤ j ≤ m, either x∗j = 0 or Aj · y∗ = cj.
(2) y∗ · (Ax∗ − b) = 0; that is, for all 1 ≤ i ≤ n, either y∗i = 0 or ai · x∗ = bi.

Proof. Follows from proof of Fact 1. Since there’s equality between b·y∗ and c·x∗, all the inequalities
are equality, which translates to the fact above.

1

For the design of approximation algorithms, the following “relaxed” complementary slackness will
be useful.

Fact 3. Let x and y be feasible solutions to (1) and (2) satisfying the following two conditions:
(1) For all 1 ≤ j ≤ m, either xj = 0 or Aj · y ≥ cj/α, and (2) For all 1 ≤ i ≤ n, either yi = 0 or
ai · x ≤ βbi. Then, c · x ≤ (αβ)b · y.
Proof. (Exercise)

Complementary Slackness

Complementary slackness tells us that when primal LP sets some variable to non-zero, then it’s for
some “good reason”. Consider the set cover LP and it’s dual:

min
m∑
j=1

c(Sj)xj : xj ≥ 0 (3)

∑
j:i∈Sj

xj ≥ 1, ∀i ∈ U

max
∑
i∈U

yi : y ≥ 0 (4)∑
i∈Sj

yi ≤ c(Sj), ∀j = 1...m

Complementary slackness tells us that xj > 0 implies
∑

i∈Sj
yi = c(Sj). Consider the following

set cover algorithm: pick a set Sj if xj > 0. Not if xj ≥ 1/f or anything, just if xj > 0.

Claim 1. The above algorithm returns an f -approximate solution.

Proof. The cost of our solution is equal to, by complementary slackness,
∑

Sj picked

∑
i∈Sj

yi which
is at most f ·

∑
i∈U yi ≤ f · LP .

Let’s take another example which will be useful next week. Recall the facility location LP (5).
Consider its dual (8). Consider the facility-client pairs (i, j) with xij > 0. Recall we filtered this
solution to get x where we had xij > 0 implying c(i, j) ≤ ρCj . Complementary slackness already
gives us the following property:

Claim 2. If xij > 0, then c(i, j) ≤ αj.
So we don’t need the filtering step at all in some sense. Order the clients in order of increasing

αj ’s, and do the clustering step. This itself gives a 4 approximation, and I leave the details as an
exercise.

Primal-Dual Algorithms

The primal-dual schema is the following for minimization problems. The algorithm starts with a
feasible dual solution (normally the all zero solution suffices). It then raises duals variables till some
dual constraint gets tight. Complementary slackness implies the corresponding primal variable can
be made positive – and the algorithm sets that primal variable to 1 (if the domain is {0, 1}). Thus,
the dual constraints show us which primal variables to “pick”. The process continues till the dual
variables can’t be increased no more at which point this stage of the algorithm terminates. The
dual value obtained so far is a lower bound on the optimum solution. The non-trivial part is to
prove that the primal variables picked are bounded within a factor from this dual value. This part
often differs from problem to problem although there are often underlying similarities.

2

The Facility Location Problem

LP relaxation.

min
∑
i∈F

fiyi +
∑

i∈F,j∈C
c(i, j)xij (xij , yi ≥ 0) (5)

∑
i∈F

xij ≥ 1 ∀j ∈ C (6)

yi ≥ xij ∀i ∈ F, ∀j ∈ C (7)

Dual.

max
∑
j∈C

αj (αj , βij ≥ 0) (8)

∑
j∈C

βij ≤ fi ∀i ∈ F (9)

αj − βij ≤ c(i, j) ∀i ∈ F, ∀j ∈ C (10)

As is the PD schema, we will like to find an algorithm which solves the UFL problem along with
(in fact guided by) finding a (hopefully feasible) solution α, β to (8), and then analyzing the cost
of the solution by comparing it with the dual solution. Intuitively, we would like to open facility
i if and only if fi =

∑
j βij , and connect client j to facility i iff αj = c(i, j) + βij . Furthermore,

we would like βij > 0 to imply j connects to i. As we’ll see, this is what we cannot ascertain for
all clients but only for a subset. We argue about the connection cost of remaining clients using
metricity of the cost function.

Initialize αj ’s and βij ’s to 0. We will maintain a set of active clients A initialized to C. These
clients are ones who haven’t been assigned an open facility and we will increase αj only of active
clients. A facility is tentatively open iff

∑
j βij = fi. We call a pair (i, j) tight if αj = c(i, j) + βij .

The algorithm raises the αj for every active client j ∈ A. It also raises βij for every tight pair
where j ∈ A. This is done till one of the following happens

1. A pair (i, j) becomes tight. If i is tentatively open, remove j from the set of active clients A.

2. A new facility i becomes tentatively open. All clients j with (i, j) being a tight pair are
removed from A.

Let X be the set of facilities tentatively opened by the above algorithm. Note that each client
j is part of a tight pair (i, j) with i ∈ X. Construct the graph G(X,E) where there is an edge
(i, i′) ∈ E iff there is a client j with βij > 0 and βi′j > 0. Let X ′ be a maximal independent set in
the graph. X ′ is the final set of facilities opened by the algorithm. Clients connect to the closest
facility in X ′.

To argue about the connection cost we consider the following possible sub-optimal assignment.
For each facility i ∈ X, let Γ(i) := {j : (i, j) is tight }. For any set T ⊆ X, Γ(T) =

⋃
i∈T Γ(i). If

j ∈ Γ(X ′), then let σ(j) = i such that (i, j) is tight and βij > 0. If βij = 0 for all i ∈ X ′, then
assign any one arbitrarily. For clients j /∈ Γ(X ′), let i ∈ X \X ′ be a facility with (i, j) tight. Since i
is not in X ′, there must exist facility i′ ∈ X ′ and j′ ∈ Γ(i′) such that βij′ > 0 and βi′j′ > 0. Assign
client j to i′.

3

Theorem 2.
∑

j∈C c(j, σ(j)) + 3
∑

i∈X′ fi ≤ 3
∑

j∈C αj

Proof. Since we open facilities when β’s pay for the fi’s we get∑
i∈X′

fi =
∑
i∈X′

∑
j∈Γ(i)

βij ,

and since X ′ is an independent set, we get that for all i ∈ X ′, βij > 0 for at most one client j.
Furthermore, i = σ(j) for such a client. So,∑

i∈X′

fi =
∑

j∈Γ(X′)

βσ(j),j =
∑

j∈Γ(X′)

(αj − c(j, σ(j)) (11)

Let’s now consider a client j who was assigned a facility i in X \ X ′. It is now assigned client
i′ ∈ X ′, and there is a client j′ as in the description of the algorithm. By triangle inequality,
c(j, i′) ≤ c(j, i) + c(i, j′) + c(j′, i′). Since βi′j′ > 0 and βij′ > 0, we know that c(i, j′) < αj′ and
c(i′, j′) < αj′ . c(i, j) ≤ αj because j was assigned i. So,

c(i′, j) ≤ αj + 2αj′

What do we know about αj and αj′? αj stopped growing when j was assigned i. This happened
after i was declared tentatively open. Since βij′ > 0, (i, j′) was tight when i was declared open;
thus, αj′ stopped growing before or at the time i was opened. In any case, αj′ couldn’t have grown
any longer than αj implying αj′ ≤ αj . Putting this in the above inequality and summing over all
j not in Γ(X ′), we get ∑

j∈C\Γ(X′)

c(j, σ(j)) ≤ 3
∑

j∈C\Γ(X′)

αj (12)

Adding (11) (after multiplying by 3 on both sides) and (12) gives us the theorem.

Since α, β was a feasible dual, we get a 3 approximation. In fact, we get something stronger
than a 3 approximation as the facilities are paid in one-is-to-one ratio. This fact will be extremely
essential in the following procedure to obtain an algorithm for the k-median problem via the
Lagrangean relaxation technique.

Lagrangean Relaxations

The following is an LP for the k-median problem.

LP := min
∑

i∈F,j∈C
c(i, j)xij (xij , yi ≥ 0) (13)

subject to
∑
i∈F

xij ≥ 1 ∀j ∈ C (14)

yi ≥ xij ∀i ∈ F, ∀j ∈ C (15)∑
i∈F

yi ≤ k (16)

4

The Lagrangean relaxation to the above LP is the following function

L(λ) := min{
∑

i∈F,j∈C
c(i, j)xij + λ(

∑
i∈F

yi − k) : (14), (15)}

For any λ ≥ 0, note that L(λ) ≤ LP . This is because for any feasible solution (x, y) to (13)
leads to a solution of L(λ) of smaller value. In other words,

max
λ
L(λ) ≤ LP

Let’s fix λ and consider L(λ). Observe this is a facility location LP (with a kλ subtracted from
the objective) now with each facility having cost λ. Using the approximation algorithm developed
in the previous section, we can obtain a solution alg(λ) which opens facilities kλ and obtains a
facility opening cost of λ · kλ and connection cost of Calg(λ). We have

Calg(λ) + 3λ · kλ ≤ 3 (L(λ) + kλ)

So, the connection cost of this solution is

Calg(λ) ≤ 3 (L(λ) + λ · (k − kλ)) ≤ 3LP + 3λ · (k − kλ)

Suppose we could find a λ such that kλ = k. Then the above algorithm run for that λ implies
a 3 approximation. If λ = 0, then obviously kλ = |F |. If λ is very high (larger than ncmax where n
is the number of clients and cmax the largest connection cost), then kλ is1. So, by doing a binary
search, we can reach in O (log(ncmax/ε)) steps, a λ and ε > 0 such that k1 := kλ−ε > k and
k2 := kλ+ε < k. Let C1 and C2 denote Calg(λ− ε) and Calg(λ+ ε) respectively. Then we get

C1 ≤ 3LP + 3(λ− ε)(k − k1); C2 ≤ 3LP + 3(λ+ ε)(k − k2)

Let ρ := k−k2
k1−k2 < 1. Using the fact that k ≤ n, we get the following.

Observation 1. ρ · C1 + (1− ρ)C2 ≤ 3(1 + 2n2ε)LP .

Let ε be small enough that we can ignore 2n2ε and for the rest of the discussion we ignore this
error term. Let X1 and X2 be the set of facilities opened by the algorithm when run with λ − ε
and λ + ε. We now describe how to combine these two solutions to obtain a 6-approximation for
the k-median problem.

Firstly note that the solution which opens k2 < k facilities is a feasible solution. So, if ρ ≤ 1/2,
then this solution itself if a 6-approximation. So we assume ρ > 1/2. We now choose k facilities
from X1 and argue this is a 6-approximation. For a facility i ∈ X2, let near(i) be the facility in X1

closest to it. Open all the facilities {near(i) : i ∈ X2}. This opens at most r ≤ k2 facilities from
X1. Choose a random subset of (k− r) facilities among the remaining (k1 − r) facilities and opens
them. This is the set of k facilities opened. Every client connects to the nearest open facility. Let
Calg be the connection cost

Lemma 1. E[Calg] ≤ 6LP .

5

Proof. We construct a solution whose expected cost is at most 6LP . Consider a client j and let
σ1(j) ∈ X1 and σ2(j) ∈ X2 be the facilities it were connected to in the two solutions. Let c1(j) be
c(j, σ1(j)) and c2(j) be similarly defined. In the new solution, we connect j to σ1(j) if it is open,
or to near(σ2(j)) if not. The probability that σ1(j) is opened is at least

p :=
k − r
k1 − r

≥ k − k2

k1 − k2
= ρ

The cost of connecting j to near(σ2(j)) is at most

c(j, σ2(j)) + c(σ2(j), near(σ2(j)) ≤ c2(j) + c(σ2(j), σ1(j)) ≤ 2c2(j) + c1(j)

Thus, the expected cost of connecting j is

pc1(j) + (1− p)(2c2(j) + c1(j)) = c1(j) + 2(1− p)c2(j) < 2[pc1(j) + (1− p)c2(j)]

where we use p ≥ ρ > 1/2. So, the expected connection cost of our solution is at most 2(pC1 + (1−
p)C2) ≤ 2(ρC1 + (1− ρ)C2) since p ≥ ρ and C1 ≤ C2.

6

