
Problems in Approximation Algorithms

CIS800

Due: November 11th, 2010

Exercise 1. (a) Recall the LP relaxation for the set cover problem done in class. We showed
that the integrality gap of the LP is at most f , where f is the maximum frequency of an
element. For all f , construct an instance of set cover where the frequencies are bounded by
f and opt = f · lp.

(b) Construct an example of a set cover with n elements such that opt = Ω(log n) · lp.
Hint: Consider a set system with k sets and

(
k

k/2

)
elements with each element in k/2 sets.

Exercise 2. Consider the knapsack problem: we are given a knapsack of size B and n single copy
items with item j having profit pj and weight wj . Assume wj ≤ B for all j. The goal is to pick
a subset of items which fits into the knapsack and gives maximum profit. The LP relaxation is as
follows:

max{
n∑

j=1

pjxj :
n∑

j=1

wjxj ≤ B; 0 ≤ xj ≤ 1, ∀j ∈ [n]}

Let x be a basic feasible solution of the above LP.

(a) Let F := {j : 0 < xj < 1}. What can you say about |F |?

(b) Can you use the above to get a 1/2-approximation for the knapsack problem?

(c) What is the integrality gap of the above LP?

(d) Can you get a better approximation if we have the guarantee that pj ≤ ε · opt for all items
j? Can you use this to get a (1− ε) approximation in time nO(1/ε)?
Hint: There cannot be more than 1/ε items having profit pj > ε · opt in the final solution.

Exercise 3. Let’s investigate LP relaxations for the max-cut problem. We’ll think of a cut as a
{0, 1} assignment on the vertices, and an edge is in the cut if its endpoints are assigned different
values.
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(a) (Undirected Graphs.) Let’s have a variable xuv for each edge (u, v) and a variable yu for each
vertex u ∈ V . Consider the following linear program

lpU := max
∑

(u,v)∈E

wuvxuv 0 ≤ x, y ≤ 1 (1)

subject to xuv ≤ yu + yv ∀(u, v) ∈ E
xuv ≤ 2− (yu + yv) ∀(u, v) ∈ E

– Prove that (1) is a valid LP relaxation for the max-cut problem.
– Design an algorithm which returns a cut of weight at least lpU/2.
– Show that the 2 above cannot be replaced by any smaller constant; that is the integrality

gap of the LP is arbitrarily close to 1/2.

(b) (Directed Graphs.) As before, we have a variable xuv for every directed edge (u, v) and yu

for every vertex. Consider the following linear program

lpD := max
∑

(u,v)∈E

wuvxuv 0 ≤ x, y ≤ 1 (2)

subject to xuv ≤ yv ∀(u, v) ∈ E
xuv ≤ 1− yu ∀(u, v) ∈ E

– Prove that (2) is a valid LP relaxation for the max-cut problem in directed graphs.
– What’s the best upper and lower bounds you can prove on the integrality gap of this

LP?

Hint: You might want to recall that we already have local search algorithms which return cuts of
weight w(E)/2 and w(E)/4 for the two cases respectively.

Exercise 4. Consider the following problem called maximum budgeted allocation (MBA). There
are m items and n agents. Each agent i bids bij on item j, and has a budget Bi. On getting a

subset S of items, agent i pays min
(
Bi,
∑

j∈S bij

)
. The problems is to find an allocation of items

to agents which generates the maximum revenue.
Cast this problem as that of maximizing a submodular function over a matroid constraint and

argue there exists a randomized (1−1/e) approximation algorithm for the problem. Check whether
the two oracles can be simulated in polynomial time. 1. Value oracle: given set S, return f(S). 2.
Independence Oracle: given set S, return in S ∈ I or not.
Hint: Think partition matroids to capture that an item can go to at most one agent.

Exercise 5. Recall the definition of a weakly supermodular function r. For any two subsets
A,B ⊆ V , at least one of the two holds

1. r(A ∪B) + r(A ∩B) ≥ r(A) + r(B)

2. r(A \B) + r(B \A) ≥ r(A) + r(B).

Given an edge e, define the residual function r′(S) as follows: r′(S) = r(S) if e /∈ δ(S); otherwise
r′(S) = r(S)− 1. Prove that r′ is also weakly supermodular.
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