
CS 49/149: 21st Century Algorithms (Fall 2018): Lecture 1
Date: 13th September, 2018
Topic: The Experts Problem

Scribe: Deeparnab Chakrabarty
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please email

errors to deeparnab@dartmouth.edu.

1 The Experts Problem

Suppose you want to predict if it is going to rain or not. Unfortunately, you have no idea of
meteorology. But you have m friends who are experts (that is, they have a PhD; it doesn’t mean
they are infallible) who are willing to tell you their opinions. Your goal is to use their opinions to
make a good prediction.

Let’s formalize. We denote ei(t) ∈ {−1, 1} to be expert i’s prediction of whether it will rain or
not on the tth day. The index i ranges from 1 to m. You observe these ei(t)’s, and then you need
to make a prediction a(t) ∈ {−1, 1}. Then the tth day unfolds, and you get to see r(t) ∈ {−1, 1}
whether it actually rained or not. If a(t) doesn’t match r(t), say you pay a dollar – this is your loss
`(t) on day t. Thus, formally, `(t) = (1− a(t) · r(t))/2. We want to devise a strategy, an algorithm,
to make the total loss incurred, loss :=

∑T
t=1 `(t), as small as possible. This is the experts problem.

Note that this is not your usual computation problem with a fixed input and output. It has a
flavor of a game that one is playing with nature, and in a sense nature (who is responsible for r(t))
gets to “play second”. That is, our algorithm’s decision has to be made under uncertainty of the
outcome. Whenever this happens, it is not clear what “the best algorithm” even means. What is a
good benchmark to compare against?

Well, since our algorithm is deriving information from the experts, perhaps we should com-
pare our losses with those of the m experts. In particular, at time t define `i(t) to be 1 if expert i
makes a mistake at time i, and let lossi :=

∑T
t=1 `i(t). But our experts can have differing qualities

– which one should we choose our benchmark as? Well, it is clear that the “best expert” (the one
with the smallest lossi) is the most stringent among these benchmarks; let us see if we can design
an algorithm which is as good as the best expert.

The case of the perfect expert. Let’s start with the case there is one “perfect expert”. That is,
there is some i∗ with lossi∗ = 0. If we knew who this perfect expert was, then our strategy is
clear – predict whatever i∗ is predicting. Can we quickly recognize this expert? The answer is yes,
and the algorithm is simple. It maintains a candidate set A of active experts; any expert not in A
has made some mistake in the past and thus cannot be the perfect expert. Initially A = [m], and
we wish to whittle this set down fast. The MAJORITY algorithm is this: always predict what the
majority of the experts in A are predicting (if |A| is even, break ties arbitrarily). Every time our
algorithm makes a mistake, that is, everytime loss increments by +1, we know that at least |A|/2
experts are whittled out. Thus, the maximum number of mistakes MAJORITY makes is log2m.

1

Theorem 1. In the case of the perfect expert, the MAJORITY algorithm finds this expert making
log2m mistakes.

b

Question: Can any algorithm always find the perfect expert making� log2m queries?

However, perfect experts are mythical. What if we were only promised an expert who is correct
99% of the time? How would MAJORITY perform? Well, not too well as defined since the near-
perfect expert could make a mistake on the first day along with the majority and be immediately
whittled out. How should we fix this?

Idea 1: Suppose we knew we were playing for T days. Keep taking MAJORITY till some expert
makes > 0.01T mistakes and then whittle him/her out. Two issues: one, it needs to know that
some expert was as good as 99% (how would we know that?). More seriously, it’s not a good
algorithm – find an example where this algorithm fails badly.

Idea 2: When an expert makes a mistake, instead of whittling them out, just decrease their
“importance”. More precisely, every expert has an importance or a weight wi(t). Initially, all the
weights are 1; all experts are equal in our eyes. Each day, we go with the weighted majority. More
precisely, we compute

∑m
i=1wi(t)ei(t) and predict its sign (with 0 considered “positive”). Upon

receiving the truth, that is, r(t), we update the weights as follows: we penalize every expert which
makes a mistake at time t by halving their weight. The full algorithm is described below.

WEIGHTED MAJORITY

• Maintain weights wi() for each expert with wi(1) = 1 for all i.

• On days t = 1, . . . , T :

– We receive ei(t) from each i.

– For each prediction {+1,−1} we calculate the total weight of experts predicting it,
and go with whichever is larger.

– Then we receive r(t). For every i with ei(t) 6= r(t), we set

wi(t+ 1) = wi(t)/2 (1)

Theorem 2. If there exists an expert which makes at most k mistakes, then the WEIGHTED MA-
JORITY algorithm makes at most 2.41k +O(logm) mistakes.

Corollary 1. If there is an expert who is correct at least 99% of the time, then if one plays for
T � logm days, the WEIGHTED MAJORITY is correct ≥ 96% of the time.

Proof. (of Theorem.) The analysis is similar in spirit to the analysis of the MAJORITY algorithm –
we focus on the times t at which the algorithm makes a mistake. Consider such a time t when
a(t) 6= r(t). By the algorithm’s design we get to see at this t,∑

i:ei(t)6=r(t)

wi(t) ≥
∑

i:ei(t)=r(t)

wi(t) (2)

Now note that for all experts in the LHS, their weight wi(t + 1) = wi(t)/2 while for all experts in
the right, wi(t+ 1) = wi(t). Therefore, the total weight scales down.

2

More precisely, let’s define for any t,

Z(t) :=

m∑
i=1

wi(t)

For any time t at which WEIGHTED MAJORITY makes a mistake, (2) implies
∑

i:ei(t)=r(t)
wi(t) ≤

Z(t)/2. Furthermore, we get

Z(t+ 1) =
∑

i:ei(t)6=r(t)

wi(t+ 1) +
∑

i:ei(t)=r(t)

wi(t+ 1)

=
∑

i:ei(t)6=r(t)

wi(t)/2 +
∑

i:ei(t)=r(t)

wi(t)

= Z(t)/2 +
1

2

∑
i:ei(t)=r(t)

wi(t)

≤ 3Z(t)/4

The above was for the times when our algorithm makes a mistake. What about the times when
it doesn’t? Well, since the weights never increase, we have the trivial inequality Z(t + 1) ≤ Z(t).
Thus, if our algorithm makes ` mistakes (that is, ` = loss), after T rounds we get

Z(T) ≤ (3/4)` · Z(1) = (3/4)` ·m (3)

So if our algorithm makes a lot of mistakes, the potential Z falls rapidly. Why is this at all useful
in comparing with the best expert’s loss? This is the second insight: if there is some expert making
only k mistakes, then his weight at the end is at least (1/2)k. Even if all the other experts are duds
making tons and tons of mistakes, this expert forces

Z(T) ≥ (0.5)k (4)

Now rest is arithmetic. From (3) and (4) we get

(1/2)k ≤ m · (3/4)`

Taking logs base 2 and swapping signs, we get

k ≥ − log2m+ ` log2(4/3)

and then changing sides, we get

` ≤ 1

log2(4/3)
· (k + log2m)

completing the proof.

Can we do better? Well surely what was special about “halving”. What if instead we scaled
down by some other factor (1 − η). That is, consider WEIGHTED MAJORITY where (5) is replaced
by

wi(t+ 1) = wi(t) · (1− η)

3

Theorem 3. If there exists an expert which makes at most k mistakes, then the WEIGHTED MA-
JORITY algorithm with any parameter 0 ≤ η ≤ 1

2 makes at most (2 + η)k +O
(
logm
η

)
mistakes.

Proof. The proof is similar to the one above with a little more arithmetic jugglery. The inequality
corresponding to (3) becomes (check this!)

Z(T) ≤ (1− η

2
)` ·m

Note that when η = 1/2, we get (3). Similarly, (4) becomes (check this!)

Z(T) ≥ (1− η)k

Therefore, together we get
(1− η)k ≤ m · (1− η/2)`

which in turn implies
k ln(1− η) ≤ lnm+ ` ln(1− η/2)

Finally, we use the fact1 that for any |x| ≤ 1
2 , we have −(x+ x2) ≤ ln(1− x) ≤ −x giving us

−k(η + η2) ≤ lnm− `η/2

whenever η ≤ 1
2 . Moving things around we get

` ≤ 2(1 + η)k +
2 lnm

η

So we got the 2.41 down to “arbitrarily” close to 2. Can we do better? Turns out that determin-
istic algorithms can’t do better. b

Question: Show that given any deterministic algorithm can’t get a better than factor 2 approximation.
More precisely, for any strategy and for any T , show a collection of expert answers and “truths” such
that the best expert makes ≤ δ mistakes but the algorithm makes 2δ mistakes. In fact, this is true even
with just two experts.

1.1 Getting arbitrarily close with randomization

Suppose now are algorithm is allowed to toss coins. That is, the quantity a(t) is a random variable
which −1 with a certain probability and +1 with the remainder. The expected number of mistakes
made by the algorithm at time t is therefore the probability with which a(t) 6= r(t). The total
expected loss is the sum of these expectations (recall, linearity of expectation).

What would be the “natural” algorithm if we allowed randomization? Note that in the WEIGHTED

MAJORITY if 50.001% of the weight voted for +1 and 49.999% voted for −1, the algorithm went
with +1. Even with this slim lead. The “fairer” randomized algorithm that suggests itself is that

1Just plot the functions and see. One can also prove this analytically.

4

we should say +1 with probability 50.001% and−1 with the remainder probability. Turns out, this
algorithm leads us arbitrarily close to the best expert!

A more convenient way of looking at the RANDOMIZED WEIGHTED MAJORITY algorithm is
by thinking of picking a random expert and going with their decision. That is, given the weights
we pick an expert i proportional to wi(t), and then predict a(t) = ei(t). Observe that this is the
same fair algorithm described above.

RANDOMIZED WEIGHTED MAJORITY

• Maintain weights wi() for each expert with wi(1) = 1 for all i.

• On days t = 1, . . . , T :

– Select expert i with probability ∝ wi(t).
– Predict a(t) = ei(t).

– Then we receive r(t). For every i with ei(t) 6= r(t), we set

wi(t+ 1) = wi(t) · (1− η) (5)

where η is a parameter between 0 and 1/2.

Theorem 4. If there is an expert making at most k mistakes, then the expected number of mistakes
made by the RANDOMIZED WEIGHTED MAJORITY algorithm is

Exp[loss] ≤ (1 + η) · k + O(logm)

η

Proof. The proof idea is similar to the deterministic proof at a high level. As before, let Z(t) :=∑m
i=1wi(t). Note we have (4) as is; to repeat

Z(T) ≥ (1− η)k ≥ e−k(η+η2) (6)

We have used the old inequality ln(1− x) ≥ −x− x2 for all |x| ≤ 1
2 , above.

Now the greedy rule is no longer true. Let losst be the random variable indicating whether
a(t) 6= r(t). Note that,

Exp[losst] =
∑

i:r(t) 6=ei(t)

Pr[i selected] =
1

Z(t)

∑
i:r(t)6=ei(t)

wi(t) (7)

Now, note that the difference in the ‘potential’ is

Z(t+ 1)− Z(t) = −η
∑

i:r(t)6=ei(t)

wi(t) = −ηZ(t)Exp[losst]

giving us
Z(t+ 1) ≤ Z(t) · (1− ηExp[losst]) ≤ Z(t) · exp (−ηExp[losst])

We have used 1 + x ≤ ex for all x above. Why? Because it allows us to “telescope”. We get

Z(T) ≤ m · exp

(
−η

T∑
t=1

Exp[losst]

)
= m · exp (−η ·Exp[loss]) (8)

5

Taking natural logs on (8) and (6), gives

−(η + η2)k ≤ lnm− ηExp[loss]

The theorem follows by “moving stuff around”.

6

	The Experts Problem
	Getting arbitrarily close with randomization

