
CS 49/149: 21st Century Algorithms (Fall 2018): Lecture 10
Date: 16th October, 2018

Topic: Randomized Estimation Algorithms. Median-of-Average trick.
Scribe: Maryam Negahbani

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please email
errors to maryam@cs.dartmouth.edu.

1 Preliminaries

Definition 1 (Discrete Random Variable). Random variable X is a function defined on some dis-
crete sample space Ω that takes any x ∈ Ω to a value Pr[X = x] with 0 ≤ Pr[X = x] ≤ 1 such that∑
x∈Ω

Pr[X = x] = 1.

In this lecture, we use “random variable” to refer to a discrete random variable.

Definition 2 (Independent Random Variables). Two random variables X and Y are independent
if Pr[X = x, Y = y] = Pr[X = x]Pr[Y = y].

Definition 3 (Expectation/Mean of a Random Variable). The expected value of a random variable
X is denoted by both E[X] and µx and defined as:

µx = E[x] =
∑
x∈Ω

xPr[X = x]

Fact 1 (Linearity of Expectation). For any constant α and any two random variables X and Y :

• E[αX] = αE[X]

• E[X + Y ] = E[X] + E[Y ]

Applying the second formula on any finite set of random variables, say X1, X2, . . . , Xk gives:

E[

k∑
i=1

Xi] =

k∑
i=1

E[Xi]

Note that the Xi’s do not need to be independent.

Next, we define a measure for the expected deviation of a random variable from its expecta-
tion. The first thing that comes to mind is to use X − E[X] as X’s “deviation” from its mean and
then take its expectation. But the problem is that X − E[X] is positive for some values of x ∈ Ω
and negative for some other ones which “cancel out” in average and cause E[X − E[X]] = 0. The
next idea would be to use |X − E[X]| as our deviation but working with absolute values is hard.
So we use (X − E[X])2 instead, which leads to the following definition:

Definition 4 (Variance of a Random Variable). Variance of a random variable X is denoted by
both Var[X] and σ2

X and defined as:

σ2
X = Var[X] = E[(X − E[X])2] = E[X2]− E[X]2
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Remark: σX is called the standard deviation of X .

Fact 2. For any constant α, and pair-wise independent random variables X and Y we have:

• Var[αX] = α2Var[X]

• Var[X + Y ] = Var[X] + Var[Y ]

Fact 3. Var[X] ≥ 0 so E[X2] ≥ E[X]2.

Recall that we already knew this by Jensen’s inequality since f(x) = x2 is a convex function.

2 Concentration Inequalities

Next, we see two inequalities that basically say there is a “low” probability that a random variable
gets a value “too far” from its expectation.

Theorem 1 (Markov’s Inequality). For any non-negative random variable X and any t > 0 we
have:

Pr[X ≥ t] ≤ E[X]

t

Proof.

E[X] =
∑
x

xPr[X = x] =
∑
x≥t

xPr[X = x] +
∑
x<t

xPr[X = x]

≥
∑
x≥t

xPr[X = x]

≥ t
∑
x≥t

Pr[X = x]

= tPr[X ≥ t]

The first inequality uses the fact that X is non-negative.

Another way to look at Markov’s inequality is by setting t := αE[X] for α > 0 which gives:

Pr[X ≥ αE[X]] ≤ 1

α

Note that this upper-bound is non-trivial only if α > 1. So for example, if you wanted to upper-
bound the probability of X ≥ E[X]/2, Markov’s inequality is not useful. This brings us to the next
inequality:

Theorem 2 (Chebyshev’s Inequality). For any random variable X and t > 0 we have:

Pr[|X − E[X]| ≥ t] ≤ Var[X]

t2
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Proof.
Pr[|X − E[X]| ≥ t] = Pr[(X − E[X])2 ≥ t2]

As (X − E[X])2 is a non-negative random variable, we can use Markov’s inequality to bound the
above probability:

Pr[(X − E[X])2 ≥ t2] ≤ E[(X − E[X])2]

t2
=

Var[X]

t2

Again, to look at Chebyshev’s inequality differently, replace t by αVar[X] for some α > 0:

Pr[|X − E[X]| ≥ α
√

Var[X]] ≤ 1

α2

Qualitatively, if you move X away from E[X] by some factor of α, the drop in probability is
quadratic with respect to this α.

Another benefit of Chebyshev’s inequality over Markov’s is that in the former, the bound is
proportional to 1/α2 while in the latter, it is only 1/α which means that Chebyshev’s bound is
tighter with respect to α.

3 Randomized Estimation

Suppose there is a population of M people and each person has either watched “Kill Bill” or not.
You are asked to compute the ratio of people that have watched Kill Bill (number of people that
have watched it to M ). Of course, for computing the exact solution, one has to check each person
individually and ask if they have watched Kill Bill. However, this can be infeasible if M is large.
Then what if you were asked to approximate it? That is, assume the actual solution is f∗ and you
are supposed to find a Z such that |Z − f∗| ≤ ε for some parameter ε > 0. This is still not enough,
because for small ε and large M , you still have to check almost every individual.

Now, what if you are allowed to make “bad predictions” sometimes (but not too often). That is,
there is a parameter δ > 0 and you could make random predictions as long as Pr[|Z−f∗| > ε] ≤ δ.
This Z is a random variable and since it is used for estimation purpose here, we call it a “random
estimator”.

Definition 5 ((ε, δ)-Estimator). Random variable Z is an (ε, δ)-estimator for f∗ if:

Pr[|Z − f∗| ≥ ε] ≤ δ

Definition 6 (Unbiased Estimator). An estimator Z for f∗ is unbiased if E[Z] = f∗

If Z is an unbiased estimator, it gives a correct estimation “in average”. But we still need to
bound the probability of Z giving a far off estimation. Using Chebyshev’s inequality, we get:

Pr[|Z − f∗| ≥ ε] = Pr[|Z − E[Z]| ≥ ε] ≤ Var[Z]

ε2

Thus:
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Fact 4. To find an (ε, δ)-estimator, it suffices to find an unbiased estimator Z and show:

Var[Z]

ε2
≤ δ

The following is an example of an unbiased estimator:

TRY1

• Sample an individual uniformly at random

• Z :=

{
1 if watched Kill Bill
0 otherwise

• Return Z

The Z returned by Try1 is in {0, 1}. These Boolean random variables are called “indicator random
variables” and in this case, Z is an indicator of watching Kill Bill.

Fact 5. If X ∈ {0, 1} is indicator of event S we have:

• E[X] = 1×Pr[X = 1] + 0×Pr[X = 0] = Pr[S]

• Var[X] = E[X2]− E[X]2 = E[X]− E[X]2 = Pr[S]−Pr[S]2 = Pr[S](1−Pr[S]) ≤ 1
4

Thus for our Z we have:

E[Z] = Pr[individual has watched Kill Bill] =
No. of people that watched Kill Bill

M
= f∗

Which means Z is indeed unbiased. As for the variance:

Var[Z] = f∗(1− f∗) ≤ 1

4

Substituting the variance into the equation of fact(4) we get: 1/4 ≤ ε2δ which is totally useless.
We would want a “knob” on the variance of our estimator, so we could adjust it relative to the
parameters we get (a constant variance is not immediately helpful). Nevertheless, in the next
section, we will see a general purpose technique for generating a low-variance estimator from an
unbiased estimator.

3.1 The “Average” Trick

TRY2 (Input: Parameter k)

• Run Try1 k times to obtain Z1, Z2, . . . , Zk

• Y := 1
k

∑
i Zi

• Return Y
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By fact(1):

E[Y ] =
1

k

∑
i

E[Zi] = f∗

And by fact(2):

Var[Y ] =
1

k2

∑
i

Var[Zi] ≤
1

4k
≤ 1

k

So one thing to remember about the average trick is that:

Given an unbiased estimator, the average trick reduces its variance by a factor of 1/k.

This k is the knob we were looking for. After we substitute Var[Y ] in fact(4) we find the value
of k to be:

k =
1

ε2δ

This Y is our first (ε, δ)-estimator. Interestingly, Y is independent of M . That is, no matter if
your population is small or large, you only need k many samples to give a good estimator. This
seems to be counter intuitive but where is the contradiction coming from? Note that, the situation
would have been different if we wanted to estimate the number of people that have watched Kill
Bill (instead of their ratio). In that case, you would want to find Y ′ such that for given ε′ and δ:

Pr[|Y ′ − f∗M | ≥ ε′] ≤ δ ⇒ Pr[|Y
′

M
− f∗| ≥ ε′

M
] ≤ δ

So if we just substitute Y ′/M with Y and replace ε′/M by εwe get our previous problem. But now,
the ε depends on M and so is k:

k =
1

ε2δ
=
M2

ε′2δ

In this case, the number of samples taken by Try2 has a quadratic dependence on the size of the
population.

3.2 The “Median-of-Average” Trick

In this section, we will see another general purpose method for reducing the dependency of the
number of samples on δ from 1/δ to log (1/δ).

In the last section, we found Y such that Pr[|Y − f∗| ≥ ε] ≤ δ which basically means:

Pr[Y ≥ f∗ + ε or y ≤ f∗ − ε] ≤ δ

But what if we only care about bounding Pr[Y > f∗ + ε]? By repeating Try2 with k = 2/ε2 for t
times independently:

Pr[Yi ≥ f∗ + ε] ≤ 1

2
, ∀i ∈ {1, 2, . . . , t}

5



What is the probability that all of Y1, Y2 . . . , Yt turn out to be bigger than f∗ + ε? Next, we prove
that this probability is small, which means W := mini Yi should be a good estimator.

Pr[W ≥ f∗ + ε] = Pr[min
i
Yi ≥ f∗ + ε]

= Pr[All of Yi’s are ≥ f∗ + ε]

=
t∏
i=1

Pr[Yi ≥ f∗ + ε]

≤ 1

2t

Thus, to get Pr[W ≥ f∗ + ε] ≤ δ we just need to set t = log (1/δ). Similarly, for the same
Y1, Y2 . . . , Yt we can show that if Q := maxi Yi, then Pr[Q ≤ f∗ − ε] ≤ δ. So it seems that the
good (ε, δ)-estimator for f∗ lies somewhere between W and Q. The first idea that comes to mind
is to use (W +Q)/2 as our estimator. But even when both W and Q are good (i.e. W ≤ f∗ + ε and
Q ≥ f∗ − ε), (W +Q)/2 might be far from f∗ as shown in the following diagram:

However, the picture suggests that the median might be a good estimator. Because for the
median to be outside of the f∗ ± ε interval, it must be that at least half of the Yi’s are out of the
interval, and the probability of this event is very low.

TRY2.9 (Input: Parameter t)

• Run Try2 with k = 2/ε2 for 2t+ 1 times independently to obtain Y1, Y2, . . . , Y2t+1

• f̂ := median(Y1, Y2, . . . , Y2t+1)

• Return f̂

Now we upper-bound Pr[f̂ ≥ f∗ + ε]:

Pr[f̂ ≥ f∗ + ε] = Pr[“some” t+ 1 many of Yi’s are ≥ f∗ + ε]

= Pr[∃S ⊂ {1, 2, . . . , 2t+ 1} s.t. |S| = t+ 1 and Yi ≥ f∗ + ε ∀i ∈ S]

For any S ⊂ {1, 2, . . . , 2t+ 1} of size exactly t+ 1, define ES to be the event that Yi ≥ f∗+ ε for all
i ∈ S. Since Pr[Yi ≥ f∗ + ε] ≤ 1

2 for all i ∈ S, we have Pr[ES ] ≤ 1
2t+1 . Assume there are N many

of these S’s. Then the existence event from the last equality above can be described as the event
that ESi happens for some i ∈ {1, 2, . . . , N}. By the union bound:

Pr[f̂ ≥ f∗ + ε] = Pr[ES1 ∪ ES2 ∪ · · · ∪ ESN
] ≤

N∑
i=1

Pr[ESi ] ≤
N

2t+1
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Similarly, it can be shown that:

Pr[f̂ ≤ f∗ − ε] ≤ N

2t+1

So overall, the probability that f̂ is out of the f∗ ± ε interval is:

Pr[|f̂ − f∗| ≥ ε] = Pr[f̂ ≥ f∗ + ε or f̂ ≤ f∗ − ε]
≤ Pr[f̂ ≥ f∗ + ε] + Pr[f̂ ≤ f∗ − ε]

≤ N

2t

But there is a tiny problem here. N =
(

2t+1
t+1

)
≈ 4t so our upper-bound becomes trivial. There is an

easy fix for this problem: instead of setting k = 2/ε2 let k = 10/ε2.

TRY3 (Input: Parameter t)

• Run Try2 with k = 10/ε2 for 2t+ 1 times independently to obtain Y1, Y2, . . . , Y2t+1

• f̂ := median(Y1, Y2, . . . , Y2t+1)

• Return f̂

Now we repeat the previous analysis with this new k:

Pr[Yi ≥ f∗ + ε] ≤ 1

10
, ∀i ∈ {1, 2, . . . , 2t+ 1}

Pr[f̂ ≥ f∗ + ε] ≤
N∑
i=1

Pr[ESi ] ≤
N

10t+1

Pr[|f̂ − f∗| ≥ ε] ≤ N

10t
≈ 4t

10t
=
(2

5

)t
To get the right hand side to be δ we set t to be:

t = log 5
2

1

δ
= O(log

1

δ
)

Putting it all together, the algorithm is: Sample kt = 10
ε2

log 5
2

1
δ many individuals, divide them

into t batches of size k each, compute the average of each batch and return their median. This
median-of-average trick basically says:

One can construct an (ε, δ)-estimator given O(V 1
ε2

log 1
δ ) instances of an unbiased estimator

with variance V .
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