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1 The Nearest Neighbor Problem

The NEAREST NEIGHBOR (NN) problem is a standard problem in multiple areas of Computer
Science. In this problem, we are given a data set S, which we can preprocess to answer queries
of a certain type. The points in S can be thought to be lying in a metric space U , i.e. there is a
notion of distance (given by a metric D) between any two points in S. So U can be assumed to
be Rd, where d is very large, say d ≈ 106. The query that we have to answer is of the following
form: Given a point q in the metric space U , we need to return the point in S that is closest to q.
Formally, the problem is given as follows:

NEAREST NEIGHBOR (NN)
Input: Data Set S ⊆ U , |S| = n. Distance metric D(x, y) ∀x, y ∈ U .
Query: Given q ∈ U , output x ∈ S such that x = argmin

y∈S
D(y, q).

Now, suppose we consider the following relaxed version of the problem, which we call AP-
PROXIMATE NEAREST NEIGHBOR (ANN). In this problem, given a query point q, we are allowed
to return a point in S whose distance from q is within a constant factor c of the smallest distance
from q to S. Formally, the problem is given by:

APPROXIMATE NEAREST NEIGHBOR (ANN)
Input: Data Set S ⊆ U , |S| = n. Distance metric D(x, y) ∀x, y ∈ U . c > 1.
Query: Given q ∈ U , output x ∈ S such that D(x, q) ≤ cD(y∗, q), where y∗ = argmin

y∈S
D(y, q).

How do we go about solving this problem? Let’s consider the NN problem again. The trivial
algorithm to solve NN does O(n) distance computations. For standard norms, a single distance
computation takes time proportional to the dimension d and hence the query time of the trivial
algorithm would be O(nd). This is very inefficient since both n and d are large. We want to solve
the problem making sublinear (in n) distance computations. While that seems extremely hard for
the exact NN problem, the approximate version might enable us to achieve this query time.

What if d was small, say d = 2? Is the problem easy then? The answer is Yes. In that case,
we can do a preprocessing by Voronoi decomposition which partitions the R2 plane into multiple
regions, with each region R containing one point pR from S such that pR is the point closest to any
point in R. So, for each query q, we only need to check which region it falls into and can answer
the query in O(1) time. One way to do this Voronoi decomposition is by using kd-trees, which is
widely used for low dimensional data.

But what happens if d is large? Is the Voronoi decomposition still an efficient way to prepro-
cess? The answer is No. The decomposition takes time exponential in d. And hence, for large d,
the Voronoi partition is infeasible.
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We present the Algorithm for ANN by Indyk, Motwani 1998.
Consider the following variation of the ANN Problem, which we call the APPROXIMATE NEAR

NEIGHBOR problem.

APPROXIMATE NEAR NEIGHBOR

Input: Data Set S ⊆ U , |S| = n. Distance metric D(x, y) ∀x, y ∈ U . Parameter R. c > 1.
Output: Given a query q ∈ U , do exactly one of the following:

(i) Return x ∈ S such that D(x, q) ≤ cR

(ii) Return NO, i.e. assert that there does not exist x ∈ S such that D(x, q) ≤ R.

Note that to solve the ANN problem, we need to find the smallest R for which APPROXIMATE

NEAR NEIGHBOR outputs (i), i.e. returns some point. Hence, given an algorithm for APPROX-
IMATE NEAR NEIGHBOR, we can use it as a blackbox and solve the ANN problem by doing a
binary search with the parameter R and incur a (negligible) factor of O(logD∗) in the runtime
where D∗ is the smallest distance from the query q to the data set S. So, in the next section, we fo-
cus on solving the APPROXIMATE NEAR NEIGHBOR problem and we look at a hashing technique
that we use to solve it.

2 Locality Sensitive Hashing (LSH)

In standard hashing, we have the property that two distinct elements rarely collide. But here,
we consider a type of hashing such that if two elements are “close”, then they will collide with
high probability, and if they are “far away”, then they do not collide with high probability. This is
useful for ANN because when a query comes, we can hash it, and if it collides with some point,
then there’s high likelihood that that point is close to the query.

Definition 1 (Locality Sensitive Hashing (LSH)). A family H of hash functions (h : U → [r] for
a metric space U with distance metric D and some range r) is (R, cR, p1, p2)-LSH if the following
hold:

• ∀x, y ∈ U with D(x, y) ≤ R, we have Prh∈H [h(x) = h(y)] ≥ p1.

• ∀x, y ∈ U with D(x, y) > cR, we have Prh∈H [h(x) = h(y)] ≤ p2.

Also, we have p1 > p2.

For an (R, cR, p1, p2)-LSH hash family, its quality is measured by the parameter ρ := ln p1
ln p2

(We
shall see in Section 2.1 why it is defined this way). Note that since p1 > p2, ρ < 1 (We shall also see
later why we need this).

Example

Let us the consider the following example of an LSH.
U = {0, 1}n. The family H of hash functions is given by H = {h1, . . . , hn}with hi : U → {0, 1}

and hi(x) = xi. D(x, y) is the Hamming distance between x and y, denoted by ||x− y||1.
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Then, for all x, y ∈ U ,

Prh∈H [h(x) = h(y)] = Pr[hi is chosen s.t. xi = yi]

=
No. of coordinates in which x and y agree

n

=
n−D(x, y)

n

= 1− D(x, y)

n
.

Hence, by definition, this familyH is (R, cR, 1− R
n , 1−

cR
n )-LSH. Also, 1− R

n > 1− cR
n is satisfied

since c > 1.

We note that for an (R, cR, 1 − R
n , 1 −

cR
n )-LSH hash family, ρ =

ln(1− R
n )

ln(1− cR
n )
≈
−R
n

− cR
n

= 1
c ,

assuming that R << n.

2.1 Solving APPROXIMATE NEAR NEIGHBOR using LSH

First, given an (R, cR, p1, p2)-LSH with constant probabilities p1 and p2, we want to boost them to
vanishingly large and small respectively. We do that in two steps:

STEP 1 OF PROBABILITY BOOST

Define a new hash function g(x) = (h1(x), . . . , hk(x)) (k is to be set in the analysis), where
each hi is a randomly and independently drawn function from the (R, cR, p1, p2)-LSH hash
family H .

As a result, we make the following observations.

Observation 1. If D(x, y) > cR, then Pr[g(x) = g(y)] = Pr[hi(x) = hi(y) ∀i = 1, . . . , k] ≤ pk2 . This
follows from definition of (R, cR, p1, p2)-LSH and from the fact that hi’s are drawn independently.
We want this probability pk2 to be at most 1/n. Hence, we set k = lnn

ln 1
p2

.

Observation 2. If D(x, y) ≤ R, then, by definition of (R, cR, p1, p2)-LSH and since hi’s are drawn

independently, we get Pr[g(x) = g(y)] ≥ pk1 = p

lnn

ln 1
p2

1 = n

ln p1
ln 1
p2 = n

− ln p1
ln p2 = n−ρ.

So, we now see the reason behind the definition of ρ. However, the probability n−ρ is very
small for constant ρ, and we would like to boost it up further. We take care of this in Step 2.

Now, we try to use the hash function g for the APPROXIMATE NEAR NEIGHBOR problem. We
would like to keep a hash table T and store x ∈ S in the slot T [g(x)]. That way, we ensure with
high probability that points within a distance of R are hashed to same slot, while the ones which
are at least cR distance apart are hashed to different slots. But then, the size of the hash table
would have to be the range of g, which is nk since the range r of each hi is taken to be n. The space
requirement of nk is infeasible as k can be O(log n). But note that the number of non-empty slots
in the hash table will be at most |S| = n. So, we use “standard hashing” to maintain this hash
table in a space efficient way, still accessing the slot for each x in O(1) time. Let us recall what the
standard hashing algorithm does.
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STANDARD HASHING

Given a universe U and a static dictionary D ⊆ U with |D| = s, the standard hashing algo-
rithm answers queries of the form “Does q ∈ D?” (and hence accesses the slot for q in the hash
table) in

• O(1) time

• O(s) space

• O(s) preprocessing time.

In our case, the universe is the set of all possible nk slots, and the dictionary is the set of all non-
empty slots, i.e. {g(x) : x ∈ S}. Thus, using standard hashing, given x ∈ S, we can access the
g(x)th slot inO(1) time, maintaining the hash table usingO(n) space andO(n) preprocessing time.

We proceed to describe Step 2. We want the “close” points to collide with high probability, instead
of with probability only n−ρ. For achieving this, the idea is to run multiple independent trials of
Step 1, and it is enough to have at least one of them succeed. This is because the only bad case is
when all the trials fail, and that happens with very low probability. So, we do the following:

STEP 2 OF PROBABILITY BOOST

Repeat Step 1 for L = 10nρ times, i.e.

• Choose L independent copies g(1)(x), . . . , g(L)(x) for each x ∈ S.

• Keep L different hash tables T1, . . . , TL s.t. for each i ∈ [L], Ti is the hash table that g(i)

hashes to.

Hence, we use O(nL) space and O(nL) preprocessing time.
We now show that as a result of this step, the probability of collision of “close” points in at

least one Ti is high.

Claim 1. Given D(x, y) ≤ R, Pr[∃i ∈ [L] : g(i)(x) = g(i)(y)] ≥ 1− e−10.

Proof. Let x, y ∈ U have D(x, y) ≤ R. Then,

Pr[∃i ∈ [L] : g(i)(x) = g(i)(y)] = 1−Pr[∀i ∈ [L] : g(i)(x) 6= g(i)(y)]

≥ 1− (1− 1

nρ
)L by Obs. 2 & independence of g(i)’s

= 1− (1− 1

nρ
)10n

ρ

≥ 1− e−10.

However, similarly the probability of collision of “far away” points also increases as we now
have multiple hash tables. We handle it in our algorithm. We are now ready to complete our
algorithm for APPROXIMATE NEAR NEIGHBOR.
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APPROXIMATE NEAR NEIGHBOR ALGORITHM

Given a query q,

1. Compute g(1)(q), . . . , g(L)(q).

2. Go to corresponding locations in Ti for each i ∈ [L].

3. Keep collecting points from the tables till you get 4L points (or till you exhaust the slots).

4. Check if any of these ≤ 4L points are ≤ cR distance away from q.

• If yes, then return it.

• Otherwise, return NO, i.e. assert there does not exist x ∈ S such that D(x, q) ≤ R.

Query time: Steps 1,2 and 3 clearly take O(L) time. Step 4 requires O(L) distance computations.
Hence, the query time of this algorithm is the time taken by O(L) = O(nρ) distance computations.

Analysis

We prove that the algorithm returns the correct answer for the APPROXIMATE NEAR NEIGHBOR

problem with high probability. We see that if the algorithm actually returns a point, it is definitely
within a distance of at most cR from q. So the only way the algorithm can be incorrect is when
there is a point x ∈ S such that D(x, q) ≤ R, but it still returns NO. This may happen in two ways:

(a) x is not hashed with q by any g, i.e. ∀i ∈ [L], g(i)(x) 6= g(i)(q) .

(b) There are 4L far away points which have hashed with q in some table, i.e. there are 4L points
z with D(z, q) > cR such that g(i)(q) = g(i)(z) for some i ∈ [L].

Note that if neither (a) nor (b) occurs, then the algorithm correctly returns some point y such
that D(y, q) ≤ cR.

So we calculate the probability of either (a) or (b) happening. By Claim 1, the complement of
event (a) has probability at least 1− e−10. Hence, Pr[(a)] ≤ e−10.

Now, consider event (b). We call a point z with D(z, q) > cR as a “far away” point. We fix a
far away point z and an i ∈ [L]. Then, by Observation 1, Pr[g(i)(q) = g(i)(z)] ≤ 1

n .
For i ∈ [L], let Ni be a random variable that denotes the number of far away points z with

g(i)(z) = g(i)(q). It follows that E[Ni] ≤
Total number of far away points

n
≤ 1.

Hence, E[No. of far away points that get hashed with q by g(i) for some i ∈ L] ≤
L∑
i=1

E[N(i)] ≤

L. So, by Markov inequality, Pr[4L far away points collide with q] ≤ 1/4. Hence, Pr[(b)] ≤ 1/4.
This implies that Pr[(a) or (b)] ≤ e−10 + 1/4 < 1/2 and so the algorithm has error probability
< 1/2. Now, we can use the standard trick of running the algorithm independently log 1/δ times
to make the error ≤ δ.
Space and time complexity: To get error≤ δ, this algorithm takesO(nL log 1/δ) = O(n1+ρ log 1/δ)
space and preprocessing time. The total query time is O(nρ log 1/δ) distance computations. Now
we use the fact that ρ < 1 and argue that the number of distance computations we make is sublin-
ear in n and so is an improvement over the trivial algorithm. Recall that for the (R, cR, 1− R

n , 1−
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cR
n )-LSH that we constructed for n-length binary strings, ρ = 1

c , where c is the approximation
factor we are aiming for. We can expect ρ to be inversely proportional to c for the LSH we use as
well, giving a natural trade-off between the approximation factor and the query time.

2.2 Min-hash

In this section, we see another example of an LSH family.
Consider the following setting. Each point in set S (can be thought of as a set of documents) is

a (multi)subset of a huge set W (a set of words). Hence, the universe U is the power set 2W , and
S ⊆ U . The distance metric betweenA,B ∈ S is given byD(A,B) = 1−J(A,B), where J(A,B) is
the “Jaccard similarity” between A & B, given by J(A,B) = |A∩B|

|A∪B| . So when a query q ∈ U comes,
we want to find the subset in S that is closest to q with respect to the Jaccard similarity.

We want an LSH for this metric. It is obtained by using “min-hash”, which we define next. Let
H be a family of hash functions where each function h ∈ H is from 2W to [W ]. For a permutation
π of W and A ⊆W , define hπ(A) = min

a∈A
π(a). Define H = {hπ : π is a permutation of W}.

To prove that H is an LSH, we need to find Prhπ∈H [hπ(A) = hπ(B)]. Note that this is equal to
the probability that for a permutation π ofW picked uniformly at random, min

a∈A
π(a) = min

b∈B
π(b). To

find this, we only need to consider the numbers assigned by π to the elements inA∪B. Since every
element inW is assigned a unique number, the minimum among numbers assigned to elements in
A will be equal to that in B if and only if some element in A∩B is assigned the minimum number
among the elements in A∪B. Since the permutation π is drawn uniformly at random, it is equally
likely to assign any element in A ∪ B the minimum number. Thus, Prhπ∈H [hπ(A) = hπ(B)] =
|A ∩B|
|A ∪B|

= J(A,B) = 1−D(A,B). Hence, by definition, the hash familyH is (R, cR, 1−R, 1−cR)-

LSH.
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