CS 49/149: 21st Century Algorithms (Fall 2018): Lecture 14

Date: 30th October, 2018

Topic: Streaming. Estimating the second moment - two algorithms

Scribe: Chao Chen

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please email errors to chao.chen.gr@dartmouth.edu.

1 Recap

1.1 Frequency Moment Estimation

Think of we have a really large array A[1...n] coming in as a stream. Once an element leaves the stream, it is gone. Elements of the array are selected from the set ranging from 1 to m. Thus, A[i] \in {1, 2, ..., m}. And f_j is the number of occurrences of j in the stream for j \in {1, 2, ..., m}. We want to estimate K^{th} moment:

$$F_k = \sum_{j=1}^m f_j^k$$

1.2 Estimation Algorithm

We want to develop an algorithm which returns a random variable Z such that

• Unbiased:

$$\mathbb{E}(Z) =$$
"what we want"

• Error:

Additive Error: $\mathbf{Pr}[|Z - \mathbb{E}(Z)| \ge \epsilon] \le \delta$ (1) Multiplicative Error: $\mathbf{Pr}[Z \notin \mathbb{E}(Z)(1 + \epsilon)] \le \delta$ (2)

From last class, we know if we want (1), we need $\operatorname{Var}(Z)\frac{1}{\epsilon^2}\ln\frac{1}{\delta}$ samples. If we want (2), we need $\frac{\operatorname{Var}(Z)}{\mathbb{E}(Z)^2}\frac{1}{\epsilon^2}\ln\frac{1}{\delta} \leq \frac{\mathbb{E}(Z^2)}{\mathbb{E}(Z)^2}\frac{1}{\epsilon^2}\ln\frac{1}{\delta}$ samples.

2 Estimate F_2

2.1 Problem

We want to estimate $F_2 = \sum_{j=1}^m f_j^2$ under the assumption that $n \approx m$. Consider this two cases:

1. The elements have approximate equal frequency, i.e. for each j, $f_j \approx \frac{n}{m}$:

$$F_2 = m \cdot (\frac{n}{m})^2 = \frac{n^2}{m} \approx n$$

2. Some elements have large frequency while others are small, i.e for some j, f_j is really large (we call this a "surprise factor"), F_2 will be really large.

2.2 Algorithm 1 – Try 1

<u>Try 1</u>

- Sample a j \in {1, 2, ..., m} u.a.r
- Count/Evaluate *f_j*
- return $Z = m f_j^2$

Analysis: We need to evaluate the bound of the number of samples Try1 need. Remember that it's bound by $\frac{\mathbb{E}(Z^2)}{\mathbb{E}(Z)^2} \frac{1}{\epsilon^2} \ln \frac{1}{\delta}$. Calculate $\mathbb{E}(Z)$:

$$\mathbb{E}(Z) = \sum_{j=1}^{m} \mathbf{Pr}[j \text{ is sampled}] \cdot mf_j^2$$
$$= \sum_{j=1}^{m} \frac{1}{m} \cdot mf_j^2$$
$$= \sum_{j=1}^{m} f_j^2$$

Calculate $\mathbb{E}(Z^2)$:

$$\mathbb{E}(Z^2) = \sum_{j=1}^{m} \mathbf{Pr}[j \text{ is sampled}] \cdot (mf_j^2)^2$$
$$= \sum_{j=1}^{m} \frac{1}{m} \cdot (mf_j^2)^2$$
$$= m \sum_{j=1}^{m} f_j^4$$

Consider two cases:

• For each j, $j = \frac{n}{m}$:

$$\frac{\mathbb{E}(Z^2)}{\mathbb{E}(Z)^2} = \frac{m\sum_{j=1}^m f_j^4}{(\sum_{j=1}^m f_j^2)^2} = \frac{m(\frac{n}{m})^4 m}{((\frac{n}{m})^2 m)^2} = 1$$

This is good, since the bound of the number of samples is $\frac{1}{\epsilon^2} \ln \frac{1}{\delta}$.

• $f_1 = n$ and for all $j \in \{2, ..., m\}, f_j = 0$:

$$\frac{\mathbb{E}(Z^2)}{\mathbb{E}(Z)^2} = \frac{mn^4}{n^4} = m$$

This is not good, since the bound of number of samples is $m\frac{1}{\epsilon^2} \ln \frac{1}{\delta}$. If m is large, it's going to be large.

2.3 Algorithm 1 – Try 2

<u>Try 2</u>

- Sample a $j \in \{1, 2, ..., m\} \propto f_j$ i.e. $\frac{f_j}{n}$ (suppose we know $\frac{f_j}{n}$)
- Count/Evaluate *f_j*
- return $Z = nf_j$

Analysis: Again, we need to evaluate the bound of the number of samples Try2 need. Calculate $\mathbb{E}(Z)$:

$$\mathbb{E}(Z) = \sum_{j=1}^{m} \mathbf{Pr}[j \text{ is sampled}] \cdot nf_j$$
$$= \sum_{j=1}^{m} \frac{f_j}{n} \cdot nf_j$$
$$= \sum_{j=1}^{m} f_j^2$$

Calculate $\mathbb{E}(Z^2)$:

$$\mathbb{E}(Z^2) = \sum_{j=1}^{m} \mathbf{Pr}[j \text{ is sampled}] \cdot (nf_j)^2$$
$$= \sum_{j=1}^{m} \frac{f_j}{n} \cdot (nf_j)^2$$
$$= n \sum_{j=1}^{m} f_j^3$$

Consider four cases:

• For each j, $j = \frac{n}{m}$:

$$\frac{\mathbb{E}(Z^2)}{\mathbb{E}(Z)^2} = \frac{n \sum_{j=1}^m f_j^3}{(\sum_{j=1}^m f_j^2)^2} = \frac{n(\frac{n}{m})^3 m}{((\frac{n}{m})^2 m)^2} = 1$$

This is good, since the bound of the number of samples is $\frac{1}{\epsilon^2} \ln \frac{1}{\delta}$.

• $f_1 = n$ and for all $j \in \{2, ..., m\}$, $f_j = 0$:

$$\frac{\mathbb{E}(Z^2)}{\mathbb{E}(Z)^2} = \frac{n\sum_{j=1}^m f_j^3}{(\sum_{j=1}^m f_j^2)^2} = \frac{n(n)^3}{((n)^2)^2} = 1$$

This is good as well.

• $f_1 = \frac{n}{2}$, for all $j \in \{2, ..., n/2\}$, $f_j = 1$ and for others $f_j = 0$:

$$\frac{\mathbb{E}(Z^2)}{\mathbb{E}(Z)^2} = \frac{n\sum_{j=1}^m f_j^3}{(\sum_{j=1}^m f_j^2)^2} = \frac{\frac{n^4}{8} + \frac{n^2}{2}}{(\frac{n^2}{4} + \frac{n}{2})^2} \approx constant$$

This is good as well.

• $f_1 = \sqrt{n}$, for other j, some $f_j = 1$ and some $f_j = 0$ s.t. $\sum_{j=1}^m f_j = n$:

$$\frac{\mathbb{E}(Z^2)}{\mathbb{E}(Z)^2} = \frac{n\sum_{j=1}^m f_j^3}{(\sum_{j=1}^m f_j^2)^2} \approx \frac{n^{\frac{5}{2}}}{n^2} \approx \sqrt{n}$$

This is not that good, but it's good enough, since the bound of number of samples is approximately $\sqrt{n} \frac{1}{\epsilon^2} \ln \frac{1}{\delta}$.

Try 2 is an acceptable good approach, but the problem is that we don't know $\frac{f_j}{n}$. So Try 3 will propose an approach that give us \sqrt{n} bounds without the knowledge of $\frac{f_j}{n}$.

2.4 Algorithm 1 – Try 3

<u>Try 3</u>

- Sample a coordinate $r \in A[1...n]$ u.a.r
- j = A[r]
- $n_j \equiv #$ of occurrence of j in A[r...n]
- return $Z = (2n_j 1)n$

Analysis:

Calculate $\mathbb{E}(n_j|j)$:

Given that we sampled j, we are equally likely to sample any of the f_j occuerence.

$$\mathbb{E}(n_j|j) = \frac{f_j + (f_j - 1) + (f_j - 2) + \dots + 1}{f_j}$$
$$= \frac{f_j(f_j + 1)}{2f_j}$$
$$= \frac{f_j + 1}{2}$$

Calculate $\mathbb{E}(Z|j)$:

$$\mathbb{E}(Z|j) = (2\mathbb{E}(n_j|j) - 1)n$$
$$= nf_j$$

Calculate $\mathbb{E}(Z)$:

$$\mathbb{E}(Z) = \sum_{j=1}^{m} \mathbf{Pr}[sample \ j] \cdot \mathbb{E}(Z|j)$$
$$= \sum_{j=1}^{m} \frac{f_j}{n} \cdot nf_j$$
$$= \sum_{j=1}^{m} f_j^2$$

Calculate $\mathbb{E}(Z^2)$: Given that we sampled j, $Z \leq 2nf_j$.

$$\mathbb{E}(Z^2) = \sum_{j=1}^m \mathbf{Pr}[sample \ j] \cdot \mathbb{E}(Z^2|j)$$
$$\leq \sum_{j=1}^m \frac{f_j}{n} \cdot (2nf_j)^2$$
$$= 4n \sum_{j=1}^m f_j^3$$
$$\leq 4\sqrt{n} (\sum_{j=1}^m f_j^2)^2$$
$$= 4\sqrt{n} \mathbb{E}(Z)^2$$

So $\frac{\mathbb{E}(Z^2)}{\mathbb{E}(Z)^2} \leq 4\sqrt{n}$, this is good, it give us the bound of the number of samples to be $4\sqrt{n}\frac{1}{\epsilon^2}\ln\frac{1}{\delta}$

2.5 Algorithm 2

ALGORITHM 2

- C = 0
- Sample a g: $[m] \longrightarrow \{1, -1\}$ from a 4-wise independent hash family.
- When element a arrives:

$$C = C + g(a)$$

• return $Z = C^2$

Analysis:

From the algorithm, we know that

$$C = \sum_{a} f_a \cdot g(a)$$

Calculate $\mathbb{E}(Z)$:

$$\mathbb{E}(Z) = \mathbb{E}(C^2)$$
$$= \mathbb{E}\left[\sum_{a=1}^m f_a \cdot g(a)\right)^2\right]$$
$$= \mathbb{E}\left[\sum_{a=1}^m f_a^2 + \left(\sum_{a \neq b} f_a f_b g(a) g(b)\right]\right]$$
$$= F_2 + \sum_{a \neq b} f_a f_b \mathbb{E}[g(a)g(b)]$$

Since g is from 4-wise independent hash family, the second term is 0.

$$= F_2$$

Calculate $\mathbb{E}(Z^2)$:

$$\begin{split} \mathbb{E}(Z^2) &= \mathbb{E}(C^4) \\ &= \mathbb{E}[\sum_{a=1}^m (f_a \cdot g(a))^4] \\ &= \mathbb{E}[\sum_{a=1}^m f_a^4 + \sum_{a \neq b} f_a^2 f_b^2 + \sum_{a,b,c,d} f_a f_b f_c f_d g(a) g(b) g(c) g(d)] \\ &= \sum_{a=1}^m f_a^4 + \sum_{a \neq b} f_a^2 f_b^2 + \sum_{a,b,c,d} f_a f_b f_c f_d \mathbb{E}[g(a) g(b) g(c) g(d)] \end{split}$$

Since g is from 4-wise independent hash family, the third term is 0.

$$= \sum_{a=1}^{m} f_{a}^{4} + \sum_{a \neq b} f_{a}^{2} f_{b}^{2}$$
$$= (\sum_{a=1}^{m} f_{j}^{2})^{2}$$
$$= F_{2}^{2}$$

So $\frac{\mathbb{E}(Z^2)}{\mathbb{E}(Z)^2} = 1$, this is good, since it give us the bound of the number of samples to be $\frac{1}{\epsilon^2} \ln \frac{1}{\delta}$

Question: Can algorithm 2 be modified to estimate F_3 ?