
CS 49/149: 21st Century Algorithms (Fall 2018): Lecture 3
Date: 20th September, 2018

Topic: MWU Application: Linear Programming
Scribe: Rui Liu

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please email
errors to rliu@cs.dartmouth.edu.

1 The Linear Programming

Linear programming is a technique for the optimization of a linear objective function, subject to
linear inequality constraints, as the following equations.

minimize
m∑
i=1

cixi

subject to m constraints aTi x ≥ bi, i = 1...m

where x ∈ Rn and c ∈ Rn

(1)

The goal is to minimize the linear combination of x in the feasible region, subject to constrains
given by inequalities. The feasible region is {x ∈ Rn : satisfy all constraints}. b

Question: What is the largest total of corners in a n dimensional space?

Answer: In the n dimensional space, the largest total number of corners is
(
n
m

)
, because m non-

parallel hyper-plane are needed to create a corner.
Instead of traversing the complete feasible region for opt, we could approach the linear pro-

gramming problem by approximation. We will return x̂ within 1/ε2 time, s.t. the following equa-
tions hold for all i = 1...m.

cT x̂ ≤ opt

aTi x̂ ≥ bi − ε

Spacial case when m = 1. When m = 1, xj ∈ [0, 1], the problem becomes a variant of Knapsack
problem. Given a set of items, each with a weight and a value, determine the number of each item
to include in a collection so that the total weight is less than or equal to a given limit and the total
value is as large as possible. This problem could solved by a greedy algorithm.

minimize cT x̂

subject to aT x̂ ≥ b

1



GREEDY ALGORITHM FOR KNAPSACK

• Order items by decreasing vj
cj

• Keep putting xj = 1 until the reaching the constraint b

• Maybe the last item xj < 1

The time complexity of the greedy algorithm is O(n log n). b

Question: Is the outcome of the greedy algorithm guaranteed to be optimal?

Answer: Yes, the optimization is guaranteed and it could be proved by exchange argument.

1.1 Appy MWU

ORACLE Instead of finding an x satisfying all the constraints, we could find an x ∈ [0, 1] satis-
fying only the following equation (by average all the constraints).

minimize cT x̂

subject to
1

m

m∑
i

aTi x ≥
1

m

m∑
i

bi

Since the feasible region of our ORACLE is the super set of the feasible region given all the m
constraints, we know cT x̂ ≤ opt.

With randomization, we modify the constraint to
∑m

i Pia
T
i x ≥

∑m
i Pibi. Assume ORACLE

give a distribution {Pi(t)} and it returns x(t) subject to the following constraints.

cTx(t) ≤ opt
m∑
i

Pt(t)a
T
i x(t) ≥

m∑
i

Pi(t)bi
(2)

We assume aTi xi−bi is bounded by some value ρ > 0. That is ∀i ∈ {1, ...,m}, aTi xi−bi ∈ [−ρ, ρ].
We define loss function as the following equation.

`i(t) :=
aTi x(t)− bi

ρ
(3)

MULTIPLICATIVE WEIGHT UPDATE LINEAR PROGRAMMING

• Maintain weights wi() for each expert with wi(1) = 1 for all i.

• On days t = 1, . . . , T :

– Feed Pi(t) ∝ wi(t) to ORACLE and get x(t).

2



– For constraints i that are violated increase wi(t)

wi(t+ 1) = wi(t) · (1− η`i(t)) (4)

Recall Theorem 1 in the first lecture.

Theorem 1. The expected (Exp[loss]) of the Randomized Weighted Majority is bounded.

Exp[lossalg] ≤ Exp[lossopt] +
lnm

n
+ η

T∑
t

∑
i

`2i (t) (5)

Theorem 2. Given any ε > 0, we could get aTi x̂− bi ≥ −ε within time subject to ε.

Proof. With 1, we know

1

ρ

T∑
t

m∑
i

Pi(t)(a
T
i x(t)− bi) ≤i∗

T∑
t

`i∗(t) +
lnm

η
+ η ∗

T∑
t

|`i∗(t)|

As the ORACLE defines, we know

1

ρ

T∑
t

m∑
i

Pi(t)(a
T
i x(t)− bi) ≥ 0

With the two equations above, we get

T∑
t

`i∗(t) +
lnm

η
+ η ∗

T∑
t

|`i∗(t)| ≥ 0

Move things around and get

T∑
t

(ai∗x
T (t)− bi∗) ≥ −

( lnm
η

+ η ∗
T∑
t

|`i∗(t)|
)

Let x̂ = 1
T

∑T
t x(t), we get

CT x̂ =
1

T

T∑
t

CTx(t) ≤ opt (6)

Because the definition of loss in Equation 3, the term |`i∗ | ∈ [0, 1], s.t. we have

aTi x̂− bi ≥ −ρ(
lnm

ηT
+ η)

The equation above reaches upper bound when η =
√

lnm
T .

We will get 2ρ
√

lnm
T = ε by setting T = 4ρ2 lnm

ε2
and η = ε

2ρ .

Total time approximated by O
(
4ρ2n lnm lnn

ε2

)
= Õ

(
4ρ2n
ε2

)
.

3



1.2 Linear programming example: vertex cover

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least
one vertex of the set.

We formulate this problem to the following linear programming problem. For a graph G =
(V,E), set xv = 1 if placed, otherwise xv = 0.

minimize
∑
v∈V

cvxv

subject to xu + xv ≥ 1 ∀e = (u, v)

xv ∈ [0, 1] ∀v ∈ V

In this setting, we have xu + x + v ∈ [0, 2] so ρ = 1. Thus, the total time for MWU is Õ( n
ε2
),

where n = |V |.

4


	The Linear Programming
	Appy MWU
	Linear programming example: vertex cover


