CS 49/149: 21st Century Algorithms (Fall 2018): Lecture 5
Date: 13th September, 2018
Topic: Gradient Descent, Online Convex Optimization, Perceptron.
Scribe: Chongyang Bai
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please email
errors to cy@cs.dartmouth.edu.

1 Gradient Descent in Convex Optimization

Convex Optimization can be described as follows:

min  f(2)

s.t. zeS 1)
where f(x) is a convex function, S is a convex set.

Let x, be the optimal solution of Problem 1, then our goal is to get  and a small ¢, s.t.

f(@) < flxe) +e (2)

Unconstrained Convex Optimization. When S = R"”, Problem 1 becomes unconstrained convex
optimization (UCO), the whole gradient descent algorithm is simply as follows.

UCO GRADIENT DESCENT

e 1 = "an arbitrary point” .
o i1 =x¢ — NV f(2y)

Remark: 1, is the “step size” that can change according to time t. If f is not differentiable, V f can be
replaced by a subgradient of f at x.

Projected Gradient Descent When S # R"we need to “project” the updated = to S'if x ¢ S. Let
the updated point be z, we replace z by the nearest point in S to z. The algorithm is as follows.

PROJECTED GRADIENT DESCENT

e 21 = "an arbitrary point”
o 241 =x — eV f(a)

® 11 = ms(241) := argmin [|z¢41 — pl,
peS

Let’s look at some examples of projections.



1. S=unitball ={v:}; vjz <1}, 7g(x) ==

R
2. S = [-1,1]",for example: n = 3,z = (%,3,—1) = mg(x) = (%,1,—1). Basically, V;, x; ¢
[—1,1], mg(z); = argmin|z; — ul.
we[—1,1]

3. S={p:p; > 0forVi,and ) ,p; = 1}, 7(x) = Z””ﬁ, is not true in Euclidean distance, but is
easy to compute. '

[Comments] To Do!

1. Why choosing the closest point 7(z)? We will show 2 good properties it holds and use them
to do error analysis of gradient descent.

2. Projection may not be easy to compute.
Fact1l. Vo ¢ S;u e S, ||lv —mg(v)|ly < |lv — u||, (by definition of projection)

Fact2. Yu € S, (v — ms(v))T (u — mg(v)) <0
Proof of Fact 2: Denote p = mg(v), if Fact 2 is not correct, i.e., Ju € S, (v — p)T (u — p) > 0, and let

q=p+ €e(u—p), we have

2 2
lg—v|? = —0)+e(w—p)|>
— |lp— ]2+ € [lu—p|? = 2¢(v — p)" (u—p)

(v—p)T (u—p)

2
when € < 5, we get
[lu—pll3

e lu—plls — 2¢(v —p)T(u—p) <0 3)

so |l — v||5 < ||p — v||3, but when e is very small, g can be in S, this contradicts with Fact 1!

1.1 Error Analysis of Gradient Descent

If f is convex, according to definition of subgradient, for any y, we get
Fw) 2 [(@) + (y — )" V(=) @)
Lety = x4,z = x¢, denote err(t) := f(x;) — f(z«)we get

F@)= fz) + (y — 2)'V f(2)
= (= 2.) V(@) f(a) = flas) 2 0 )

Remark: Equation 5 indicates that the angle between gradient direction V f(x;) and optimal moving
direction x, — x; is acute.



Denote D; := ||z; — 2.3 to be the square of distance between point at time t and the optimal point.
We put two useful equations here (cosine rules) for later use.

lu = wll = Jlulls + [[0]|3 — 2u"v (6)
lu+ o5 = [lull3 + [[o]l3 + 2u'v 7)
Besides, we give two reasonable assumptions.
Assumption 1. ||z — 2|, < D
Assumption 2. ||V f(x)], < p
Now let’s jump into the case of unconstrained gradient descent
Unconstrained Gradient Descent

err(t)< (x; — CL'*)TVf(.Tt)
1

=5, @ = 2.)" (@ — e11)

. ;m(lxt — 2|5+ e — a3 — e — 24]|3) (®)
QMQ D}) + 5 |V F (o)l ©)

< 5y (P = Dh) + 57 (10

where the first line is by Equation 5, the second line is by replacing V f(z:) according to the
gradient descent update rule, Equation 8 is by applying x; — . to v and x; — ;41 to v in Equation
6, the last equality is by replacing z; — ;41 according to gradient update rule, and the last line is
by assumption 2.

Sum over t from 1to T, we get

1
ZGW )< %(DQ Di ) + gtpzT
t=1
Uiz 2
1L pe T
1 & 1 n
.. 2 t 2
divided by T' = T ; err(t)< mD t50 (11)
Setny =n= %%’ RHS of Equation 11 reaches the min value of \[/)ﬁ Since we want f < ¢, when
T = D:2p2, = %iT = -z, we finally get
1 I
72 f(a) < o) +e (12)
t=1



Finally, the algorithm can return

e & = argminf(x)
t

L _ 1T
©T=F3 T

In both cases, we have f(2) < + 23:1 flxe) < flay) + €

Projected Gradient Descent We'll show how to get to Equation 9, and the rest analysis are eactly
the same as Unconstrained case.

err(t)< (z; — l’*)TVf(Z‘t)

1
= n*(ﬂﬁt - x*)T(iﬁt — Zt41)
t
1 2 2 2
= o (lwe — 2ally + |t — 2eall5 — llze41 — 24[]3) (13)

The reasons for the first two lines are the same as Unconstrained Gradient Descent. According to
the algorithm, z;—z;11 = nV f(z¢). Since x4 1 is the projection of zy1, ||zt 41 — || > ||xe41 — 24| =
Dy 1, so Equation 13 < Equation 9.

Question: How to prove ||zi41 — x|y > [|Te41 — T4y ?

proof:

2 2
llze41 — 2all53= (241 — eg1) — (T4 — 2e31) |5
= |lzts1 — gl + lze — zeralls — 2(zs — 2441) 7 (2041 — 2041)

> e — 2l

Due to Fact 2, (2, — 2441)7 (2041 — w441) < 0, s0 the last inequality holds.

1.2 Online Convex Optimization (OCO)

The setting is as follows.
e Space: Convex set S
e Atevery time ¢, you play z; € S
e A convex loss function f; : R” — Ris fed, so your loss when playing at time ¢ is f;(z:)

o |VSfi(2)|] <p,Vze S vVt=1,..T



Since alg = Zthl fi(xt), opt = msin Zthl fi(z). Denote x, = argmin Zthl fi(z). In the error
z€S

analysis of gradient descent, replace f(z) by fi(z), everything still holds. Particularly, if 7" = L2k p
and n = p%,
L I
REGRET = D (filae) = filzs) < e (14)

t=1

Application: Linear Classification Suppose we have data {(a1,b1), (a2, br), ..., (a, br)}, where
a; € R", by € {—1,1}. We promise that 3z, € R", ||z«]|, = 1, s.t. V¢, %*TH‘?) > ~. That is, the
dataset is linear separable. At everytime t, we ‘play” a hyperplane z; inR"”. we make a mistake

<= 3J(at,b;) € data, s.t. %{ﬁ”) < 0. We want to update x; to z¢41.
Define f;(2) = — bt“(zig t) then we have
o fi(xt) >0
b ft(x*) < —

We update z; by projected gradient descent,

Tiy1 = ﬂs(ﬂ?t - ﬁvft(xt))

where S {v:32; v} < 1} is the unit ball. Since ||z, — )3 < |zl + lza)l3 = 2 and ||V fi(2)| =
g, < o

Hatllg Macll; |5
descent’s error analysis, when T' = %, n = ¢, we get Equation 14.
Since fi(xy) > 0and —fi(zs) > v, from Equation 14, we have v < REGRET <e after making

T = 2 classification mistakes. v < e =T < 2, we get

= 1, we have p = 1 and D = 2. According to projected gradient

Theorem 1. The algorithm above cannot bake more than % mistakes. (PERCEPTRON)

We showed that PERCEPTRON algorithm is an instantiate of online gradient descent.



	Gradient Descent in Convex Optimization
	Error Analysis of Gradient Descent
	Online Convex Optimization (OCO)


