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Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please email
errors to cy@cs.dartmouth.edu.

1 Gradient Descent in Convex Optimization

Convex Optimization can be described as follows:

min
x

f(x)

s.t. x ∈ S
where f(x) is a convex function, S is a convex set.

(1)

Let x∗ be the optimal solution of Problem 1, then our goal is to get x̂ and a small ε, s.t.

f(x̂) ≤ f(x∗) + ε (2)

Unconstrained Convex Optimization. When S = Rn, Problem 1 becomes unconstrained convex
optimization (UCO), the whole gradient descent algorithm is simply as follows.

UCO GRADIENT DESCENT

• x1 = ”an arbitrary point” .

• xt+1 = xt − ηt∇f(xt)

Remark: ηt is the ”step size” that can change according to time t. If f is not differentiable, ∇f can be
replaced by a subgradient of f at x.

Projected Gradient Descent When S 6= Rnwe need to ”project” the updated x to S if x 6∈ S. Let
the updated point be z, we replace z by the nearest point in S to z. The algorithm is as follows.

PROJECTED GRADIENT DESCENT

• x1 = ”an arbitrary point”

• zt+1 = xt − ηt∇f(xt)

• xt+1 = πs(zt+1) := argmin
p∈S

‖zt+1 − p‖2

Let’s look at some examples of projections.
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1. S ≡ unit ball ≡ {v :
∑

j v
2
j ≤ 1}, πS(x) = x

‖x‖2

2. S = [−1, 1]n, for example: n = 3, x = (12 , 3,−1) ⇒ πS(x) = (12 , 1,−1). Basically, ∀xi, xi /∈
[−1, 1], πS(x)i = argmin

u∈[−1,1]
|xi − u|.

3. S = {~p : pi ≥ 0 for ∀i, and
∑

i pi = 1}, π(x) = x∑
i x

is not true in Euclidean distance, but is
easy to compute.

[Comments] TO DO!

1. Why choosing the closest point π(x)? We will show 2 good properties it holds and use them
to do error analysis of gradient descent.

2. Projection may not be easy to compute.

Fact 1. ∀v 6∈ S, u ∈ S, ‖v − πS(v)‖2 ≤ ‖v − u‖2 (by definition of projection)

Fact 2. ∀u ∈ S, (v − πS(v))T (u− πS(v)) ≤ 0
Proof of Fact 2: Denote p = πS(v), if Fact 2 is not correct, i.e., ∃u ∈ S, (v − p)T (u − p) > 0, and let
q = p+ ε(u− p), we have

‖q − v‖22 = ‖(p− v) + ε(u− p)‖22
= ‖p− v‖22 + ε2 ‖u− p‖22 − 2ε(v − p)T (u− p)

when ε < 2(v−p)T (u−p)
‖u−p‖22

, we get

ε2 ‖u− p‖22 − 2ε(v − p)T (u− p) < 0 (3)

so ‖q − v‖22 < ‖p− v‖
2
2, but when ε is very small, q can be in S, this contradicts with Fact 1!

1.1 Error Analysis of Gradient Descent

If f is convex, according to definition of subgradient, for any y, we get

f(y) ≥ f(x) + (y − x)T∇f(x) (4)

Let y = x∗, x = xt, denote err(t) := f(xt)− f(x∗),we get

f(y)≥ f(x) + (y − x)T∇f(x)
⇒ (xt − x∗)T∇f(xt)≥ f(xt)− f(x∗) ≥ 0 (5)

Remark: Equation 5 indicates that the angle between gradient direction∇f(xt) and optimal moving
direction x∗ − xt is acute.

2



DenoteDt := ‖xt − x∗‖22 to be the square of distance between point at time t and the optimal point.
We put two useful equations here (cosine rules) for later use.

‖u− v‖22 = ‖u‖
2
2 + ‖v‖

2
2 − 2utv (6)

‖u+ v‖22 = ‖u‖
2
2 + ‖v‖

2
2 + 2utv (7)

Besides, we give two reasonable assumptions.

Assumption 1. ‖x1 − x∗‖2 ≤ D

Assumption 2. ‖∇f(x)‖2 ≤ ρ
Now let’s jump into the case of unconstrained gradient descent

Unconstrained Gradient Descent

err(t)≤ (xt − x∗)T∇f(xt)

=
1

ηt
(xt − x∗)T (xt − xt+1)

=
1

2ηt
(‖xt − x∗‖22 + ‖xt − xt+1‖22 − ‖xt+1 − x∗‖22) (8)

=
1

2ηt
(D2

t −D2
t+1) +

ηt
2
‖∇f(xt)‖22 (9)

≤ 1

2ηt
(D2

t −D2
t+1) +

ηt
2
ρ2 (10)

where the first line is by Equation 5, the second line is by replacing ∇f(xt) according to the
gradient descent update rule, Equation 8 is by applying xt−x∗ to u and xt−xt+1 to v in Equation
6, the last equality is by replacing xt − xt+1 according to gradient update rule, and the last line is
by assumption 2.

Sum over t from 1 to T , we get

T∑
t=1

err(t)≤ 1

2ηt
(D2

1 −D2
T+1) +

ηt
2
ρ2T

≤ 1

2ηt
D2 +

ηt
2
ρ2T

divided by T ⇒ 1

T

T∑
t=1

err(t)≤ 1

2ηtT
D2 +

ηt
2
ρ2 (11)

Set ηt = η = D
ρ

1√
T

, RHS of Equation 11 reaches the min value of Dρ√
T

. Since we want Dρ√
T
≤ ε, when

T = D2ρ2

ε2
,η = D

ρ
1√
T
= ε

ρ2
, we finally get

1

T

T∑
t=1

f(xt) ≤ f(x∗) + ε (12)
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Finally, the algorithm can return

• x̂ = argmin
t

f(xt)

• x̂ = 1
T

∑T
t=1 xt

In both cases, we have f(x̂) ≤ 1
T

∑T
t=1 f(xt) ≤ f(x∗) + ε

Projected Gradient Descent We’ll show how to get to Equation 9, and the rest analysis are eactly
the same as Unconstrained case.

err(t)≤ (xt − x∗)T∇f(xt)

=
1

ηt
(xt − x∗)T (xt − zt+1)

=
1

2ηt
(‖xt − x∗‖22 + ‖xt − zt+1‖22 − ‖zt+1 − x∗‖22) (13)

The reasons for the first two lines are the same as Unconstrained Gradient Descent. According to
the algorithm, xt−zt+1 = η∇f(xt). Since xt+1 is the projection of zt+1, ‖zt+1 − x∗‖ ≥ ‖xt+1 − x∗‖ =
Dt+1, so Equation 13 ≤ Equation 9. b

Question: How to prove ‖zt+1 − x∗‖2 ≥ ‖xt+1 − x∗‖2 ?

proof:

‖zt+1 − x∗‖22= ‖(zt+1 − xt+1)− (x∗ − xt+1)‖22
= ‖zt+1 − xt+1‖22 + ‖x∗ − xt+1‖22 − 2(x∗ − xt+1)

T (zt+1 − xt+1)

≥ ‖xt+1 − x∗‖22

Due to Fact 2, (x∗ − xt+1)
T (zt+1 − xt+1) ≤ 0, so the last inequality holds.

1.2 Online Convex Optimization (OCO)

The setting is as follows.

• Space: Convex set S

• At every time t, you play xt ∈ S

• A convex loss function ft : Rn 7→ R is fed, so your loss when playing at time t is ft(xt)

• ‖∇ft(z)‖ ≤ ρ, ∀z ∈ S,∀t = 1, ..., T
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Since alg =
∑T

t=1 ft(xt), opt = min
S

∑T
t=1 ft(x). Denote x∗ = argmin

x∈S

∑T
t=1 ft(x). In the error

analysis of gradient descent, replace f(x) by ft(x), everything still holds. Particularly, if T = D2ρ2

ε2

and η = ε
ρ2

,

REGRET =
1

T

T∑
t=1

(ft(xt)− ft(x∗)) ≤ ε (14)

Application: Linear Classification Suppose we have data {(a1, b1), (a2, bT ), ..., (at, bT )}, where
at ∈ Rn, bt ∈ {−1, 1}. We promise that ∃x∗ ∈ Rn, ‖x∗‖2 = 1, s.t. ∀t, bt(xT∗ at)

‖at‖2
≥ γ. That is, the

dataset is linear separable. At everytime t, we ’play’ a hyperplane xt inRn. we make a mistake
⇐⇒ ∃(at, bt) ∈ data, s.t. bt(x

T
t at)
‖at‖ ≤ 0. We want to update xt to xt+1.

Define ft(z) = − bt(zTt at)
‖at‖2

, then we have

• ft(xt) ≥ 0

• ft(x∗) ≤ −γ

We update xt by projected gradient descent,

xt+1 = πS(xt − η∇ft(xt))

where S ≡ {v :
∑

j v
2
j ≤ 1} is the unit ball. Since ‖x1 − x∗‖22 ≤ ‖x1‖

2
2 + ‖x∗‖

2
2 = 2 and ‖∇ft(z)‖ =∥∥∥∇(− bt(zT at)

‖at‖2
)
∥∥∥
2
=
∥∥∥− btat
‖at‖2

∥∥∥
2
= 1, we have ρ = 1 and D = 2. According to projected gradient

descent’s error analysis, when T = 4
ε2

, η = ε, we get Equation 14.
Since ft(xt) ≥ 0 and −ft(x∗) ≥ γ, from Equation 14, we have γ ≤ REGRET ≤ε after making

T = 4
ε2

classification mistakes. γ ≤ ε⇒ T ≤ 4
γ2

, we get

Theorem 1. The algorithm above cannot bake more than 4
γ2

mistakes. (PERCEPTRON)

We showed that PERCEPTRON algorithm is an instantiate of online gradient descent.
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