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1 Moving from Vanilla Gradient Descent to Generalized Gra-
dient Descent

For any function f and point x ∈ Rn, the dual space of Rn, noted (Rn)∗, is Rn.

∇f(x) : y 7→ 〈y,∇f(x)〉

indeed, ∇f at any point is a linear function.

∇f(x)(y) = 〈y, f(x)〉
∇f(x)(y + z) = ∇f(x)(y) +∇f(x)(z)

〈y + z,∇f(x)〉 = 〈y,∇f(x)〉+ 〈z,∇f(x)〉

Points ‘live’ in “Point Space” (PS) while gradients live in “Gradient Space” (GS). Consequently,
gradient descent xt+1 = xt − η∇f(xt) would give a “type error” because the computation involved
different types. However, gradient descent is also (in our case) an isomorphic mapping. So given xt
and an identity map yt = I(xt),

yt = I(xt)

yt+1 = yt − η(xt)

zt+1 = I−1(yt+1)

xt+1 = ΠS(zt+1) = arg min
v∈S
||v − zt+1||

I : PS → GS is a bijection since PS ∼= GS = Rn.

The question then arises: which maps? It turns out that any differentiable function f and its
gradient ∇f gives a map:

Φ : Rn → R
I : x︸︷︷︸

PS

7→ ∇Φ(x)︸ ︷︷ ︸
GS

So which Φ 7→ I should we use? Well, if

Φ(x) =
1

2
〈x, x〉 =

1

2
||x||22

⇒ ∇Φ(x) = x
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Now suppose that Φ is strictly convex (i.e., Φ(y) > Φ(x) + (y − x)T∇Φ(x)). This implies that
x 7→ Φ(x) is invertable.

Question: Can ∇Φ(x) = ∇Φ(y) if x 6= y?

We still want ∇Φ−1(z) to exist. Suppose that Φ is 1−strongly convex (recall the definition from
our lecture on the 2nd of October, 2018: Analysis of Gradient Descent for Smooth Convex Functions.
Strongly Convex and Smooth Convex Functions) and let || · ||? be an arbitrary norm. With respect
to || · ||?, i.e.,

Φ(y) ≥ Φ(x) + (y − x)T∇Φ(x) +
1

2
||y − x||2?

Φ(x) ≥ Φ(y) + (x− y)T∇Φ(x) +
1

2
||x− y||2?

=⇒(y − x)T (∇Φ(y)−∇Φ(x)) ≥ ||y − x||2?

Consider the following example:

Φ(x) =

n∑
t=1

xi lnxi

Φ : Rnx>0 → Rn and ∇Φ(x) = [1 + lnxi]. Moreover, Φ−1(z) = x and z ∈ Rn, zi = 1 + lnxi
⇒ xi = ezi−1 . We claim that Φ is 1−strongly convex with respect to || · ||1, i.e.,

∀y, x; Φ(y) ≥ Φ(x) + (y − x)T∇Φ(x) +
1

2
||y − x||21

Or more precicely,

∑
i

yi ln yi ≥
∑
i

xi lnxi +
∑
i

[(yi − xi)(1− lnxi)] +
1

2

(∑
i

|x− xi|

)

2 Bregman Divergence

Given Φ : Rn → R that is strictly convex, the Bregman Divergence of Φ, DΦ(y, x) is defined as
follows:

DΦ(y, x) = Φ(y)− Φ(x)− (y − x)T∇Φ(x)

If x 6= y then DΦ(x, y) > 0; note, as well, that in general DΦ(x, y) 6= DΦ(y, x). If Φ is 1−strongly
convex with respect to || · ||?, then the following inequality holds:

DΦ(y, x) +DΦ(x, y) = (y − x)T (∇Φ(y)−∇Φ(x)) ≥ ||y − x||2?

Returning to an example above, if Φ = 1
2 ||x|

2
2, then

DΦ(y, x) =
1

2

(
||y||22 +

1

2
||x||22 − 2〈y, x〉

)
=

1

2
||y − x||22

Now let y, x ∈ ∆n, a simplex in Rn, yi, xi ≥ 0, and
∑
yi =

∑
xi = 1. If Φ(x) =

∑
i xi lnxi, then
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∇Φ(x) = [1 + lnxi]. The Bregman Divergence is as follows:

DΦ(y, x) =
∑
i

yi lnxi −
∑
i

xi lnxi − y − x)T [1 + lnxi]

=
∑
i

yi ln
yi
xi

= KL(y||x)

Saying that Φ is 1−strongly convex is equivalent to the following condition:

DΦ(y, x) +DΦ(x, y) ≥ ||y − x||21

Now Pinsker’s Inequality gives us,

KL(p||q) ≥ 1

2
||p− q||21

⇒ Φ(x) =
∑
xi lnxi is 1−strongly convex with respect to || · ||1.

3 Generalized Gradient Descent, aka “Mirror Descent”

Note: Need to enter graphic for mapping from Point Space to Gradient Space, and back.
The general mapping from xi ∈ ∆ ⊂ PS to yi ∈ GS, from yi+1 ∈ GS back to zi+1 ∈ PS and

projecting zi+1 onto ∆ to get xi+1 is as follows:

1. yi = ∇Φ(xi)

2. yi+1 = yi − η∇Φ(xi)

3. zi+1 = ∇Φ−1(yi+1)

4. xi+1 = arg minρ∈∆DΦ(ρ, zi+1)

To provide illustration of this process, we return to an earlier example: Φ(x) =
∑
xi lnxi. The

mapping is as follows:

1. [yt]i = 1 + ln [xt]i

2. [yt+1]i = [yt]i − η [∇f(xt)]i = 1 + ln [xt]i − η [∇f(xt)]i

3. zt+1 = ∇Φ−1(yt+1) = eln [xt]i−η[∇f(xt)]i = [xt]i e
−η[∇f(xt)]i

4. [xt+1]i =
[z+t+1]i∑n
i=1[zt+1]i

, so [xt+1] = scaling(zt+1)

We want to minx∈S f(x).
Consider mirror descent for P (x) =

∑
i xi lnxi gives us

(xt+1)i = scaling
(
xt(i)s

−η[∇f(xt)]i

)
whereas “vanilla gradient descent” gives us

(xt+1)i = “projection ∆” (xt(i)− η [∇f(xt)]i)

3



Our analysis follows the same approach as earlier:

f(xt)− f(x?) = err(t) ≤ (xt − x?)T∇f(xt) (because of the convexity of f)

=
1

η
(xt − x?)T (yt − y?) (the mirror descent algorithm)

=
1

η
(xt − x?)T (∇Φ(xt)−∇Φ(zt+1)

=
1

η
(xt − x?)T (∇Φ(zt+1)−∇Φ(xt))

=
1

η
(DΦ(x?, xt) +DΦ(xt, zt+1)−DΦ(x?, zt+1)) Bregman Cosine

≤ 1

η
(DΦ(x?, xt) +DΦ(xt, zt+1)−DΦ(x?, xt+1))

Now take Dt = DΦ(x?, xt)

=
1

η
(Dt −Dt+1)︸ ︷︷ ︸

telescopes

+
1

η
(xt, zt+1)

Properties of the Bregman Divergence

1. The Bregman Cosine Rule: 〈u− v,∇Φ(w)−∇Φ(v)〉 = DΦ(u, v) +DΦ(v, u)−DΦ(u,w)

2. The Bregman Projection: ∀u ∈ S, v 6∈ S,w ∈ ΠΦ
S (v), DΦ(u, v) ≥ DΦ(u,w) +DΦ(w, v)

3. DΦ(u, v) +DΦ(v, u) = 〈u− v,∇Φ(u)−∇Φ(v)〉

4. DΦ(u, v) ≥ 1
2 ||u− v||

2 (i.e., 1−strong convexity)
⇒ DΦ(v, u) ≤ 〈u− v,∇Φ(u)−∇Φ(v)〉 − 1

2 ||u− v||
2

Now,

DΦ(xt, zt+1) ≤ 〈xt − zt+1,∇Φ(xt)−∇Φ(zt+1)〉 − 1

2
||xt − zt+1||2

= η〈xt − zt+1,∇f(xt)〉 −
1

2
||xt − zt+1||2

≤ η||xt − zt+1|| · ||∇f(xt)||∞ −
1

2
||xt − zt+1||2

≤ η2

2
||∇f(xt||2∞

≤ η2ρ2

2

Finally, we come to the following theorem:

To minimize f(x) over ∆n, if ||∇f(x)||∞ ≤ ρ and DΦ(x1, x?) ≤ D, takes Dρ2

ε2 iterations.
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