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1 Moving from Vanilla Gradient Descent to Generalized Gra-
dient Descent

For any function f and point x € R™, the dual space of R™, noted (R™)*, is R™.

Vi) :y={y, V()

indeed, V f at any point is a linear function.

Vi) (y) = {y, f(x))
V@) (y+2) = V()(y) + VI(z)(2)
(y+2 Vi) =y, V@) + (2 V()
Points ‘live’ in “Point Space” (PS) while gradients live in “Gradient Space” (GS). Consequently,
gradient descent z;41 = z¢ — NV f(2:) would give a “type error” because the computation involved

different types. However, gradient descent is also (in our case) an isomorphic mapping. So given x;
and an identity map y; = I(xy),

ye = I(z¢)
Yer1 = yr — (1)
zeer =17 (Yerr)
Zpr1 = Hg(2zp41) = argmin ||v — 241
ves

I:PS — GS is a bijection since PS =2 GS = R".

The question then arises: which maps? It turns out that any differentiable function f and its
gradient V f gives a map:
$:R" >R
I: z — V()
<~

So which ® + I should we use? Well, if

a(r) = 5 {m,0) = 5ol
= Vo(z) ==z



Now suppose that @ is strictly convex (i.e., ®(y) > ®(x) + (y — )"V®(x)). This implies that
x — ®(x) is invertable.

Question: Can V&(x) = VO(y) if = # y?

We still want V®~1(2) to exist. Suppose that ® is 1—strongly convex (recall the definition from
our lecture on the 2" of October, 2018: Analysis of Gradient Descent for Smooth Convex Functions.
Strongly Convex and Smooth Convex Functions) and let || - ||, be an arbitrary norm. With respect
to ||+ ||, i-e.,

T 1
®(y) > O(x) + (y — 2)"Ve(x) + 5lly — 2|l
T 1
®(x) > @(y) + (v —y)"Ve(x) + Iz — ylI}
=(y — )" (Ve(y) — V&(x)) 2 [ly — =
Consider the following example:

O(x) = Z x; Inz;
t=1

¢ : R, — R" and V®(z) = [1 + Inz;]. Moreover, ~!(z) =z and z € R",2; =1+ Inz;
= z; = e*~1. We claim that ® is 1—strongly convex with respect to || - [|1, i.e.,

1
Yy, @(y) > ®(@) + (y — 2)"V(2) + Slly — I}

Or more precicely,
1
Zyi Iny;, > Zazl Inx; + Z [(yi — ) (1 —Ina;)] + 5 (Z |z — x1|>

2 Bregman Divergence

Given @ : R® — R that is strictly convex, the Bregman Divergence of ®, Dg(y,z) is defined as
follows:
Day(y,) = B(y) - B() — (y — 2)"Vo(x)

If © # y then Dg(z,y) > 0; note, as well, that in general Dg(z,y) # Do (y,x). If ® is 1—strongly
convex with respect to || - ||«, then the following inequality holds:

Da(y,z) + De(z,y) = (y —2)" (VO(y) — VO(x)) > [ly — =]}
Returning to an example above, if ® = 1||z(3, then
1 2 L o
Day,) = 5 (IIyl3 + 53 —20,2)

1
= 5lly —=l3

Now let y,z € Ay, a simplex in R", y;,2; > 0, and > y; = > a; = 1. If ®(z) = >, x;Inz;, then



V®(z) = [1 +Inz;]. The Bregman Divergence is as follows:

Dg(y,x) = Zyilnxi - inlnxi —y—a)"[1+ Inz]

Yi
- Sun
i Li

= KL(yllz)

Saying that ® is 1—strongly convex is equivalent to the following condition:
D@(ZU,I‘) + Dq>($,y) > ||y - J"H%

Now Pinsker’s Inequality gives us,

1
KL(pllg) > =|lp — ql|?

= ®(z) = > x;Inxz; is 1—strongly convex with respect to || - ||1.

3 Generalized Gradient Descent, aka “Mirror Descent”

Note: Need to enter graphic for mapping from Point Space to Gradient Space, and back.
The general mapping from xz; € A C PS to y; € GS, from y;11 € GS back to z;41 € PS and
projecting z; 11 onto A to get x;41 is as follows:

Ly = V()

2. yiy1 =y —nVe(x;)

3. zig1 = VO yi)

4. x4 = argmingea Do (p, zit1)

To provide illustration of this process, we return to an earlier example: ®(z) = > z;Ilnxz;. The
mapping is as follows:

L. [yt]i =1+1In [xt]i
2. [ye1]; = el = [V ()], = 1+ Inze], —n [V (@),
3. 241 =VO_1(yt41) = eln [we]; [V f(ze)]; — [xt]z e~V ()l

4. [x44q]; = E[,ZL:%, S0 [w441] = scaling(z¢41)

We want to minges f(z).
Consider mirror descent for P(z) =), ; Inx; gives us

(2¢41); = scaling (mt(i)s—n[vf(mt)]i)

4

whereas “vanilla gradient descent” gives us

(z41); = “projection A” (2¢(i) — n [V f(24)];)



Our analysis follows the same approach as earlier:

flay) — fze) = err(t) < (xy — 24)"Vf(2) (because of the convexity of f)
= %(mt — )" (Yt — Yu) (the mirror descent algorithm)
_ %(xt — 1) (VB(2) — V(2041
= o =) (V(z1s) = V()
= % (Do (s, zt) + Doz, 2e41) — Do (@, 241)) Bregman Cosine
1

< " (Do (24, ) + Do (x4, 2e41) — Do (T4, Tp41))

Now take Dy = Dg (24, 2¢)

1 1
= — (D¢ — Dyy1) +— (24, 2e41)
N—— 7]

telescopes

1.

2.

Properties of the Bregman Divergence

The Bregman Cosine Rule: (u — v, V®(w) — V®(v)) = Dg(u, v) + Do (v, u) — Dg (u, w)
The Bregman Projection: Yu € S,v € S,w € I (v), Dg(u,v) > Dg(u, w) + Do (w, v)
Dg(u,v) + Dg(v,u) = (u— v, V®(u) — VO(v))

Do (u,v) > |Ju—v||? (i.e., 1—strong convexity)
= Do(v,u) < (u—v,V®(u) — VO(v)) — 3[|u — v||?

Now,

1
Dy (2, 2041) < (e = 2641, VO(2t) = V(2041)) — 5 llze — Ze |
1
=n{@s — 2e41, Vf(24)) — §\|$t — za]?
1
<llze = 2ol IV (@)oo — §||$t — zal]?

772 2
< LIV (il

02 p?
2

IN

Finally, we come to the following theorem:

To minimize f(x) over A,, if [|[Vf(2)||co < p and Dg(z1,z4) < D, takes D iterations.
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