
Scheduling Theory CO 454, Spring 2009

Homework 2
Due: June 4th, 2009

1. (3+3)
Suppose f : R+ → R+ is a strictly increasing, positive function. That is, f(x) > 0 for all
x > 0 and f(x) > f(y) whenever x > y. Show by an interchange argument or otherwise that
SPT gives an optimal schedule for the problem (1||

∑
j f(Cj)), that is, minimizing the sum of

the function values of the completion times. Run SPT on the following data to output the
schedule and the optimum

∑
j f(Cj) for f(x) = x2.

Jobs 1 2 3 4 5 6 7 8
pj 3 4 1 5 2 6 2 3

2. (6)
Consider the following data for minimizing average completion time with release dates.

Jobs 1 2 3 4 5 6
pj 2 4 6 8 10 12
rj 20 18 15 11 6 0

Run the SRPT algorithm to get the optimal schedule for (1|rj , pmtn|
∑
Cj). Use this to run

the CFP algorithm done in class to get a schedule for (1|rj |
∑
Cj). What is the ratio of the

values of the two schedules? Find the optimal schedule for (1|rj |
∑
Cj) in this case.

3. BONUS (6) Recall the algorithm CFP for (1|rj |
∑
Cj). Let the schedule returned by the CFP

algorithm have sum of completion times equal to CFP . Let the optimal schedule have sum of
completion time OPT . We proved in class CFP was a factor-2 approximation algorithm, that
is, CFP ≤ 2 · OPT . We say that the factor 2 is tight if for every constant δ > 0, there is an
instance of a scheduling problem such that CFP ≥ (2− δ) ·OPT . I asked in class if one could
prove the factor 2 was tight for CFP.

• Prove that if there are only 2 jobs, then CFP ≤ 1.5 ·OPT .

• For any δ > 0, come with an example such that for that example CFP ≥ (1.5− δ) ·OPT .

• Try to extend the example to many jobs to show for any δ > 0, an example with CFP ≥
(2− δ) ·OPT , thus answering the question I asked in class.

4. (6) Run the LCL algorithm done in class for the problem (1||fmax) to find the optimal schedule
for the following data

Jobs 1 2 3 4 5 6 7
pj 4 8 12 7 6 9 9
fj(t) 3t 77 t2 1.5t 70 +

√
t 1.6t 1.4t

5. (6) Find a polynomial time algorithm to solve the problem (1|prec|fmax). Assume you are
given a directed acyclic graph D representing the precedence constraints. What is the running
time of your algorithm in terms of the number of jobs and number of arcs in D? Prove the
correctness of your algorithm.
(Hint: Think of the idea behind LCL of figuring out which job must be processed last. Try to
use the same idea with precedence constraints. Take care that unlike for (1||fmax) where any
job could be processed last, in this case some jobs cannot be processed last. Which jobs are
these? How will you modify the algorithm in presence of these jobs?)

1

6. (6) In the knapsack problem we have n items, item j has profit pj and weight wj , and a
knapsack of capacity B. The goal is to find the maximum profit subset of items whose total
weight is at most B. In class we saw a dynamic program to solve the knapsack problem in time
O(nB). However, this algorithm was not a polynomial time algorithm if B was not polynomial
in n. In this question we develop another dynamic program which runs in polynomial time
if the maximum profit of an item, call it Pmax, is polynomial in n (irrespective of the size of B).

Construct the following table T [i, p] which is supposed to contain the minimum weight subset
S of items {1, 2, . . . , i} such that the profit of the items in S is at least p. If no subset of
{1, 2, . . . , i} gives profit p, let T [i, p] contain null. Maintain another table t[i, p] which is
supposed to contain the weight of items in T [i, p]. Let t[i, p] be ∞ if T [i, p] is null.

(a) What is an upper bound on the maximum profit obtainable by any solution to the knap-
sack problem? (Answer can be in terms of Pmax).

(b) What is the size of the table you need to solve the problem? That is what should i range
from? What should p range from? (Hint: Use Q(a)).

(c) Suppose the table is constructed. How will you use the table to find out what is the
optimum solution to the knapsack problem?

(d) What are the smallest subproblems you can solve? What is T [0, p] and t[0, p], for any p?
What is T [i, 0] and t[i, 0] for any i?

(e) Suppose the table is computed so that T [i, p] is known for all p in the range of p. How
will you compute T [i + 1, p]? (Hint: Consider the (i + 1)th item. What is T [i + 1, p] if
the (i+ 1)th item is not in T [i+ 1, p]? What is T [i+ 1, p] if the (i+ 1)th item is there in
T [i+ 1, p]? How would you decide which is the case by using the t[i, p] values?)

2

