
Scheduling Theory CO 454, Spring 2009

Homework 1

May 21st, 2009

1 Examples of Scheduling Problems

Example 1: Consider a factory Cart-o-Magik which produces for its sustenance, carts,
which are demanded by various clients. The three major type of carts it has demand for
are shopping carts, trolleys for airports, and carts for transportation of goods used while,
say moving. Each type of cart goes through a similar series of operations – preparing the
metal skeleton, electro-coating the metal, attaching various parts like the base, the wheels,
together, final packaging of the carts, etc. However, the machines of Cart-o-Magik take
different times to do these operations depending on the type of cart being processed.

There are varying demands for the types of carts. Each demand comes with the number
of carts required along with a deadline by which these carts are to be delivered. A possible
goal of Cart-o-Magik is to honour as many demands as possible. How should they the
company go about doing this?

Example 2: Consider the central processing unit (CPU) of your laptop/desktop. Dif-
ferent processes are being started by a user at different point of time. For instance, one
listens to music on iTunes while changing ones status on Facebook, all the time pretending
to read these notes online. As these processes are invoked, the CPU, although fast but
having a finite amount of resources, needs to schedule these tasks so that the average time
taken for a process to complete is minimized.

Example 3: Consider a busy airport where dozens of planes land and take-off every minute.
For the time being consider only the planes landing. Suppose the airport has m-gates in
which these landed planes can dock. Also suppose plane i lands at time ri and moreover
takes time pij to travel from the terminal to the jth gate. Obviously at any point of time a
gate can dock at most one plane. How do we decide which plane to send to which gate so
that the average time taken by the passengers to get out of the plane is minimized?

All the three examples above are examples of scheduling problems and illustrate the is-
sue of allocating sparse resources over time optimizing an objective at hand. We remark
here that different objectives can lead to different solutions and so there is really no one
“universally best” schedule. It should also be clear from the above examples that schedul-
ing problems appear in a wide range of fields and a unified approach of studying them
is needed. We now describe a very general framework and notation which captures most
(but not all) scheduling problems. Our first goal in this course will be to understand this
notation thoroughly as henceforth we will not be talking about specific problems but rather
problems springing out of the notation.

1

2 Framework and Notation

Any scheduling problem has associated with it a finite set of tasks or jobs and a finite set of
resources or machines. The set of jobs is normally represented as J and is, unless mentioned
otherwise, supposed to have n elements, J = {1, 2, . . . , n}. The set of machines is normally
represented as M and the number of machines, unless mentioned otherwise, is supposed to
be m. At any point of time a single machine can process at most one job. Each job j ∈ J
has the following pieces of data associated with it.

Processing Time (pij) The time taken by machine i to process job j. Many times,
the processing time of job j will be independent of the machine, in such cases the
processing time will simply be pj .

Release Time (rj) Many times a job j is only available for processing after time rj .
This is called the release time of the job. For instance, in Example 3 above, rj is the
time plane j lands.

Due Date (dj) This is the time the job needs to be processed by. Many a times,
completion after the due date is allowed. However a penalty might be incurred for
doing so.

Weight (wj) The weight of a job denotes the relative worth of the job with respect
to the other jobs. As we will see later, many a times introducing weights can lead to
added complexity in the scheduling problem.

Most scheduling problems can be described by a triplet (α | β | γ). The first term α
is called the machine environment and contains a single entry. This field describes the re-
sources which are available for the completion of various tasks. The second term β denotes
the various constraints on the machines and jobs which must be respected by the schedule.
The third term γ denotes the objective which is trying to be optimized by the scheduling
problem.

Machine Environment (α) The possible machine environments we will study in the
course are as follows.

Single Machine Environment (α = 1) In this case we have only one machine.
Although it might seem a very special case the study of these problems will lead to
many techniques useful for more realistic cases.

Identical Parallel Machines (α = P) In this case we have m identical machines and
any job can run on any machine having the same processing time on each. When the
number of machines is constant, say m = 2, then the number of machines is appended
after the letter P , for instance, P2.

Uniform Speed Parallel Machines (α = Q) In this case we have m machines and
any job can run on any machine. However, each machine i has a speed si. The time
taken to process job j on machine i is then pj/si.

2

Unrelated Parallel Machines (α = R) In this case we have m machines and any
job can run on any machine. However, each job j takes time pij on machine i. The
pij ’s are completely unrelated. For instance, machine i could have pij > pij′ , but
machine i′ could have pi′j < pi′j′ .

Open Shop (α = O) The following three machine environments fall in the shop
scheduling framework. In this framework, each job j consists of m operations and a
job is said to be complete if and only if all the operations are completed. Furthermore,
each operation takes place on a dedicated machine. Thus each job needs to visit each
machine before completion. In the open shop, the jobs can visit the m machines in
any order.

Flow Shop (α = F) In the flow shop, each job needs to visit the machines in the
same fixed order, which is assumed to be {1, 2, . . . ,m}. One can think of the process
as a job visiting a machine and on completion entering the queue of the next machine.
A machine on completion of a job chooses to process any job in its queue. In many
applications, the machines also needs to process the jobs in the order the jobs enter
the queue. Such schedules are called FIFO schedules and the flow shop is referred to
as the permutation flow shop and is included in the β-field (see below).

Job Shop (α = J) In a job shop, each job comes with a specified order in which it
needs to be processed by the m machines. This is the most general of the scheduling
problems we will encounter in the course.

Side Constraints (β) The side constraints capture the various restrictions on the schedul-
ing problem. We note that there could be more than one side constraints. The various side
constraints we will encounter in this course are

Release Dates (β = rj) Unless specified, we assume that all jobs are available from
the beginning.

Setup Times (β = sjk(i)) Many a times a machine ineeds to spend a set-up time
after the completion of job j and beginning the job k. For example, probably the
machine needs to be cooled down after job j before starting job k. Unless mentioned
these set-up times are assumed to be 0.

Precedence Constraints (β = prec) Many times a job j cannot be processed until
a job k is finished. Such constraints are called precedence constraints. We assume
that these constraints are not cyclical, that is, we do not have a situation like job
j precedes k, job k precedes l and job l precedes j. One represents the precedence
constraint via a directed acyclic graph (DAG) where the nodes are the various jobs,
and an arc from j to k implies j precedes k in the constraint.

Preemption (β = prmp) A job can be preempted if it is not necessary that the
processing be completed once it has started. If jobs can be preempted then a schedule
can complete a fraction f of the job in one machine and a fraction (1 − f) in some
other machine. The total time to complete is in the proportion of the fractions. By
default, we assume that preemption is not allowed. If it is, then the constraint is
present in the β field.

3

Objective (γ) The objective function decides how the scheduling algorithm is designed.
However, there is a large list of possible objective functions depending on the application.
However, there are still a few which are fundamental and which we will be concerned
with. First we start with the following definition. Given a job j, the completion time in a
schedule S, is the time when the job is processed. This is denoted by CS

j . The superscript is
dropped when the context is clear. When jobs have due dates, the lateness of a job denotes
the difference between the completion time and the due date. This is denoted as Lj . Thus

Lj = Cj − dj

Note that if Lj is negative, the job is not late. An associated measure is called the tardiness
of a job which the maximum of the lateness and 0. That is, Tj = max(Lj , 0). Finally, we
use Uj to capture if a job j is finished before or after the deadline. If a job j has Cj > dj , we
say that the job is tardy and let Uj = 1. We have Uj = 0 otherwise. The various objective
functions we will study are as follows.

Makespan (γ = Cmax) Find a schedule which minimizes the maximum completion
time, that is, Cmax := maxj∈J Cj .

Total Weighted Completion Time (γ =
∑
wjCj). Find a schedule which mini-

mizes the weighted average time taken by a job to complete. When all weights are 1,
we simply use

∑
Cj in the γ-field. This measure is also called the flow time or the

weighted flow time.

Maximum Lateness (γ = Lmax) Find a schedule which minimizes the maximum
lateness of a job, that is, minimize Lmax := maxj∈J Lj .

Weighted number of tardy jobs (γ =
∑
wjUj) Find a schedule which minimizes

the weighted number of tardy jobs. When all weights are 1, we simply use
∑
Uj in

the γ-field.

Observe that all the above objective functions are nondecreasing in C1, . . . , Cn. That
is, if we take two schedules S, S′, and the completion times are such that CS

j ≤ CS′
j for

all j, then the objective value of S is smaller than that in S′. Such objective functions or
performance measures are called regular performance measures.

All the above performance measures are regular. In class we looked at the performance
measure

∑
Uj .

Claim 2.1. The performance measure
∑
Uj is regular.

Proof. Consider two schedules S and S′ such that CS
j ≤ CS′

j for all jobs j ∈ J . Therefore, if
for a job j, CS

j > dj , then CS′
j > dj as well. This implies if US

j = 1 for job j, then US′
j = 1

as well. So,
∑

j U
S
j ≤

∑
j U

S′
j implying

∑
Uj is regular.

Exercise 2.2. Prove that all the above performance measures are regular.

Not all performance measures are regular. For instance, there are scheduling problems
where each job comes j with a time window [aj , bj] and the job needs to be processed in
that particular window. Let Xj = 0 if the job is processed in that time window, and Xj = 1
otherwise. Consider the performance measure

∑
Xj . Is this regular?

4

