
Scheduling Theory CO 454, Spring 2009

Lecture 12: Identical Parallel Machines (P ||Cmax)

June 11th, 2009

In (P ||Cmax) we have m machines and n jobs. Job j takes time pj on each machine. This
problem, as we saw in the last lecture, is NP-hard even when m = 2. Thus, we look
at approximation algorithms. Throughout, we will let OPT denote the makespan of the
optimal schedule. Recall, an factor ρ > 1 approximation algorithm returns a schedule S
with CS

max ≤ ρ ·OPT .
We will use the following lower bounds on OPT . Note that,

OPT ≥ pj ∀j (1)

OPT ≥ (
∑

pj)/m (2)

1 List Scheduling: A factor 2 approximation algorithm

List scheduling is the following simple algorithm: Consider the jobs in any order. Schedule
an unscheduled job in this order on the first available machine. Note that we do not require
to know the processing times of all the jobs to schedule a particular job. Thus, this can be
used as an online algorithm.

Theorem 1.1. Let S be the schedule obtained from List-Scheduling. CS
max ≤ (2 − 1/m) ·

OPT .

Proof. Let ` be the last job to finish in S. Let tS` be the time at which this job started. We
know that at time tSl , all the machines were busy. Since no machine is idle, we have that
the total processing times of all jobs apart from ` must be at least mtSl . That is,

tSl ≤ (
∑

pj − pl)/m ≤ OPT − pl/m

Also,
CS

max = tSl + pl ≤ OPT + pl(1− 1/m) ≤ (2− 1/m) ·OPT

Let us see that the algorithm is tight for m = 2 machines. Consider the list of three jobs
with processing times {1, 1, 2}. The list scheduling algorithm will process job 1 on machine
1, job 2 on machine 2, and job 3 on machine 1 again, say. Thus CS

max = 3, while OPT = 2
with jobs 1 and 2 processed on machine 1, and job 3 on machine 2.

In the next section we see an improvement.

1

2 Longest Processing Time Rule (LPT)

The example of the previous section shows a drawback of list scheduling – the longest
jobs should be processed earlier. In fact that precisely is the LPT rule: Sort the jobs in
decreasing order of their processing times and run the list scheduling algorithm with this
list.

Theorem 2.1. LPT returns a schedule S such that CS
max ≤ (4/3− 1/3m)OPT .

Proof. Suppose, as in the previous proof, l is the last job to finish. We can assume that l is
actually the last job. The reason is if not, then consider the jobs from {1, . . . , l} (assuming
p1 ≥ p2 ≥ . . .). LPT will return the same schedule and thus will have the same makespan
as with {1, . . . , n} jobs. The optimum only decreases. Thus, if we show that the makespan
on LPT on the first l jobs is within 4/3 of the optimum of the first l jobs, we will be done.
Thus, we will assume that pl = pmin.

Lemma 2.2. If pmin > OPT/3, then CS
max = OPT .

Proof. We actually show that if no optimum schedule processes more than two jobs per
machine, then LPT will return the optimal schedule. This will imply the lemma. (Why?)

To see this, for every machine i, let i1 and i2 be the two jobs that the optimum schedules
on it (i2 being empty if only one job is scheduled) and suppose pi1 ≥ pi2 . Also, order the
machines from 1 to m such that pi1 ≥ pi′1

if i < i′. That is the largest job goes on the
first machine, the second largest on the second machine, and so on. We claim that we may
assume pi2 ≤ pi′2

for all i < i′. If not, a simple interchange argument will not decrease Cmax.
We now claim that LPT returns the same schedule. Note that if LPT also puts at most

two jobs on a machine then it precisely returns the above schedule. Suppose LPT processes
three jobs on a machine. Let j be the first job which is put on a machine with two jobs
already. Note that there at most 2m jobs. Call a job a loner if it is the only job processed
by a machine. Note that if LPT processes three jobs on a machine there must be a loner
job in LPT which is not a loner in the OPT schedule. Furthermore, when the job j is being
processed by LPT, the loner must have already been processed. Therefore, the loner has
processing time at least 2pmin > 2OPT/3 (for otherwise j would be processed with the
loner). Since it is not a loner in OPT, the job which goes with it in the optimum schedule
must have processing time < OPT/3 contradicting the premise.

Now we are almost done. Since the job which finishes last, l has pl = pmin, if pl >
OPT/3, we get CS

max = OPT . Otherwise, from the inequality in the previous proof

CS
max ≤ OPT + pl(1− 1/m) ≤ (4/3− 1/3m)OPT

Let us see that the algorithm is tight for m = 2 machines. Consider the list of five
jobs with processing times {3, 3, 2, 2, 2}. LPT will return a schedule with CS

max = 7, while
OPT = 6 with jobs 1 and 2 processed on machine 1, and rest of the jobs on machine 2.

2

