
Scheduling Theory CO 454, Spring 2009

Lecture 6: Dynamic Programming

May 21st, 2009

1 Dynamic Programming

In this lecture we will look at a strong technique in algorithm design called dynamic pro-
gramming. Most books on introductory algorithms (for example, Introduction to Algorithms
by Cormen-Leiserson-Rivest-Stein or Algorithm Design by Kleinberg and Tardos) cover this
topic extensively and we suggest referring those books for a much more thorough treatment.

Dynamic programming for optimization problems are applicable when the problem can
be broken down into many sub-problems and the optimal solution for the original problem
contains within it optimal solutions of the subproblems. The second condition is called the
optimal sub-structure and is crucial for any dynamic programming method to work. To
solve the given problem, a dynamic program solves smaller subproblems in a bottom-up
fashion. The smallest subproblems are most often trivial to solve. Since larger subproblems
contain the optimum of smaller subproblems, by storing the older solutions in a table the
dynamic program can build the optimal solution to the larger subproblem, and so on till
the original problem is solved.

We illustrate this technique by showing how it is used to solve the knapsack problem.

Definition 1.1. In the knapsack problem we have a set J of n items. Each item j has a
profit pj and a weight wj which we assume to be integers. We are also given a knapsack
of total capacity B. For this lecture we will assume B = poly(n). The goal is to choose a
subset of items of maximum profit whose total weight is at most B. An instance is denoted
as (B, J).

Suppose S is the optimal solution to the knapsack problem (B, J). Suppose J is or-
dered {1, . . . , n}. There are two possibilities for the nth item – either it is in S, or it is not.
Moreover, if n is in S, then the remaining solution S \ n is also an optimum solution to
the smaller knapsack problem (B − wn, J \ n); if n is not in S, then S is also an optimum
solutio to (B, J \n). Thus the problem satisfies the optimal substructure property. Dynamic
programming can be used to solve the problem as follows.

A table T [i, W] is maintained with i going from 1 to n and W going from 1 to B. T [i, W] is
supposed to contain the maximum profit subset of items {1, . . . , i} with total weight at most
W . If we can build this table fully then T [n, B] will give the desired solution. We also let
t[i, W] be the profit of T [i, W]. Note that T [0, W] is the empty set and t[0, W] = 0 for any
W . Similarly, T [i, 0] is empty and t[i, 0] = 0 for any i. These are the smallest subproblems
and the entries of the table we can fill in easily. To fill in the rest of the table, we use the

1

following rule. Suppose all entries T [i, W] from W = 1 to B have been evaluated.

T [i + 1, W] =

{
T [i, W] if the item i + 1 is not in the optimal solution
T [i, W − wi+1] ∪ wi+1 if i + 1 is in the optimal solution

(1)

To check if item (i + 1) is in the optimal solution or not, we need to check which of the
two sets T [i, W] or T [i, W −wi+1]∪wi+1 gives higher profit. We can check this by checking
which is bigger among t[i, W] and t[i, W −wi+1] +pi+1. Note that this can be checked from
the table. Thus, in time O(nB) (the size of the table), the knapsack problem can be solved.

Example 1.2. Consider the instance with n = 4 jobs when the knapsack capacity is B = 3.
The jobs have (weight,profit) as follows. {(3, 1), (2, 1), (1, 2), (1, 2)}. The table T [i, W] gets
filled as follows:

i, w 0 1 2 3
0 ∅ ∅ ∅ ∅
1 ∅ ∅ ∅ {1}
2 ∅ ∅ {2} {2}
3 ∅ {3} {3} {2, 3}
4 ∅ {3} {3, 4} {3, 4}

Exercise 1.3. Solve the knapsack problem with n = 4 and B = 11, with (weights,profits) as
follows: (3, 2), (4, 3), (5, 4), (7, 5). Note that you can pre-fill most of the table (that is solve
smaller subproblems) easily. The final answer should have profit 8.

The main crux in designing a dynamic program is to decide how the table should be
constructed (that is, how the subproblems should be defined). In the above problem, the
table was relatively straightforward. Sometimes however, the table is a little subtle. We
see one such in the next lecture when we show how dynamic programming can be used to
solve (1||

∑
wjUj).

As we saw, optimal substructure was a crucial ingredient for the above dynamic program.
Not all problems have an optimal substructure. As an example we look at the following
variant of the knapsack problem, called (by me) the colourful knapsack problem.

Definition 1.4. The input is as in the knapsack problem, except each item now also has
a color and the goal is to choose a subset of items with total weight at most B and no two
items of the same colour are chosen.

The colourful knapsack problem doesn’t have the optimal substructure as the knapsack
problem. To see an example, consider four items {1, 2, 3, 4} each of weight 1. The profits
are 1.5, 1, 1, 2 respectively, and the colors are red, blue, green, red. Suppose B = 3. Now
the optimum solution to ({1, 2, 3, 4}, B = 3) is the set {2, 3, 4}. However, if we look at the
subproblem ({1, 2, 3}, B = 2) which arises when we need to decide of the item {4} is in
the optimum or not, we get that the optimum of ({1, 2, 3}, B = 2) is now {1, 2} and is not
contained in {2, 3, 4}. Thus the same DP cannot be used to solve the colourful knapsack
problem.

We end this lecture with a note of caution: one should take the existence of optimal
substructure only as an evidence that there could be a DP. Similarly, the lack of an optimal

2

substructure, only implies one needs to understand the optimal solution much more, rather
than excluding the possibility of a DP. For instance, in the above problem, maybe one could
group all the similar colour items together and create the subproblems in a new fashion.
Does it work?

2 Minimizing the Weight of Late Jobs (1|dj = D|
∑

wjUj)

Recall that in a schedule a job j is late (Uj = 1) if Cj > dj . We wish to find a schedule
which minimizes the total weight of the late jobs. In the next lecture, we will show a DP
to solve the problem 1||

∑
wjUj . Now, we look at a special case when all the due-dates, dj

are the same D for all jobs and observe that the problem is then equivalent to knapsack.
Note that minimizing the total weight of late jobs is equivalent to maximizing the total

weight of timely jobs. A job is timely iff its completion time is less than D. A set T of
jobs can be timely if and only if the last job completes by time D, in other words, the
total processing time of jobs in T is at most D. Thus, the problem of maximizing the total
weight of timely jobs is the knapsack problem with knapsack capacity D and each item
corresponds to a job, the knapsack-weight of the item is the processing time of the job, and
the knapsack-profit of the item is the weight of the job. Thus, the problem can be solved
in O(nD) time.

3

