
Lecture 10.5: Bourgain’s Theorem via Padded Decompositions.

20th Mar, 2015

We want to establish the following theorem

Theorem 1. Given any metric d over the vertices V , and given k pairs (si, ti), we wish to find a
mapping φ : V → <K such that

1. ||φ(u)− φ(v)||1 ≤ d(u, v) for all pairs u and v.
2. d(si, ti) ≤ O(log k)||φ(si)− φ(ti)||1 for all i.

This was essentially proved by Bourgain. His proof was for the all pairs case (so k = n2),
and later London-Linial-Rabinovich and Aumann-Rabani extended it to general k. Below, we
do not give their proof. But a different proof essentially due to Fakcharoenphol-Rao-Talwar and
Calinescu-Karloff-Rabani. At the heart is the concept of padded decompositions.

Definition 1. Given a metric d over V , a (β,∆)-padded decomposition of (V, d) is a distribu-
tion over partitions (V1, . . . , VT ) with the following two properties

1. The (weak) diameter of each Vi is at most ∆.
2. For any vertex v, Pr[B(u, r) is shattered by the partition] ≤ β · 4r

∆

The weak diameter of a subset S is maxu,v∈S d(u, v), B(u, r) := {v : d(u, v) ≤ r} is the ball of
radius r around u, and it’s shattered by a partition if at least two parts have non-trivial intersection
with it. Finally, a padded decomposition is said to be efficient if it can be efficiently sampled from.

In general, the above β is allowed to be a function parametrized by ∆ which takes a vertex u
as input. For the time being let’s keep β to be fixed.

Let us first start with a connection to the low diameter decomposition lemma done in class last
time. Consider a (β,∆)-padded decomposition. As in the low-diameter-lemma, the diameter of each
part is at most ∆ (or 2R in the last class’s notation). Let us now argue about the cross edges. Given
any edge (u, v), the probability that (u, v) is a cross edge is at most the probability B(u, d(u, v))
is shattered. Therefore, the expected cost of the cross edges is at most 4β

∆

∑
e∈E cede = 4βL

D . Thus,
for the uniform sparsest cut problem, we get a randomized algorithm with expected sparsity O(β)
times the LP.

Padded Decompositions and Embedding into `1. We now describe how padded decomposi-
tions imply embeddings in a fairly natural way. Our mapping φ will be a scaling of a direct sum of
logD different φt’s where D is maxu,v d(u, v) and t runs from 1 to logD. Each φt is an embedding
defined as follows.
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1. Sample a partition from the (β, 2t)-padded decompostion. Let T be the number of parts.
2. φt(u) is a T -dimensional vector corresponding to the different parts: it is 2t corresponding to

the part which contains u, and 0 otherwise.

Claim 1. For any two points u and v, ||φt(u)− φt(v)||1 = 2t+1 for all t < log2 d(u, v)− 1.

Proof. Immediately follows from the fact that the diameter of every part is ≤ 2t and if t <
log2 d(u, v)− 1, then u and v cannot be in the same part, and so ||φt(u)− φt(v)||1 = 2t+1.

Claim 2. For any two points u and v, we have Exp[||φt(u)− φt(v)||1] ≤ β · 8d(u, v).

Proof. The probability u and v are in different parts is at most 4βd(u, v)/2t, and therefore the
claim follows.

Now let us consider the embedding φ which takes the direct sum of all the φt’s. By Claim 1, we
get

For any u, v, ||φ(u)− φ(v)||1 ≥
log2 d(u,v)−2∑

t=0

2t+1 ≥ d(u, v)

4
(1)

By Claim 2, we get

For any u, v, Exp[||φ(u)− φ(v)||1] ≤ 8d(u, v)

log2 D∑
t=0

βt(u) (2)

Note that we have moved to the functional version of β which takes the diameter ∆ = 2t

as a paramerter, and u as the input. If β were just a ‘scalar’, so to speak, then we would get
8β log2Dd(u, v) in the RHS. In sum, we get an embedding of d into `1 with distortion depending
on the β-parameter of the padded decomposition. Next, we get a good padded decomposition for
a general metric.

Good Padded Decompositions. We now describe a good padded decomposition by describing
a randomized algorithm which generates samples from this.

1. Sample a random permutation σ of the points in V .
2. Sample R ∈ [∆/4,∆/2] uniformly at random.
3. Define Vi := {v : d(i, v) ≤ R} \

⋃
j≤σi

Vj .

It is clear that the diameter of every Vi is at most ∆; indeed it is at most 2R. The next theorem
shows it is a good padded decomposition. Let V (u) be the Vi that contains u.

Theorem 2. For any point u, Pr[B(u, r) 6⊆ V (u)] ≤ 8r
∆ · log

(
|B(u,∆

2
+r)|

|B(u,∆
4
−r)|

)
Before we prove the theorem, note that the RHS is non-trivial only for r ≤ ∆/8. Therefore, we can

upper bound the RHS by 8r
∆ log

(
|B(u,∆)|
|B(u,∆

8
)|

)
, and so in (2) we can substitute

βt(u) = log

(
|B(u, 2t)|
|B(u, 2t−3)|

)
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which implies that the (2) translates to

For any u, v, Exp[||φ(u)− φ(v)||1] ≤ 8d(u, v)

log2 D∑
t=0

log

(
|B(u, 2t)|
|B(u, 2t−3)|

)
≤ 24 log n · d(u, v)

This proves the O(log n)-embedding of any metric onto `1. We have now all the ingredients for
Bourgain’s theorem as mentioned in the first para – how will you get the O(log k)? Note that we
do not need an upper bound of (1) for all pairs but only the k-pairs (si, ti). We leave this as an
exercise, and proceed to prove the theorem above.

Proof of Theorem 2. Let B denote the ball B(u, r). Let us consider a vertex i such that Vi is
the first in σ-order to shatter B(u, r). For this to occur, we must have d(u, i) − r ≤ R and
R ≤ d(u, i) + r: the former since Vi intersects B(u, r) and the latter since it doesn’t contain all of
it. Since R ∈ [∆/4,∆/2], we get that i must lie in the set X := B(u,∆/2 + r) \B(u,∆/4− r).

Furthermore, in the random permutation σ, i must appear before any vertex in B(u,∆/4− r)
should appear before i. Now we can make a similar calculation as done for the multicut problem.

Pr[B(u, r) 6⊆ V (u)] = PrR,σ[∃i ∈ X : Vi is the first in σ to shatter B(u, r)]

≤
∑
i∈X

PrR,σ[Vi is the first in σ to shatter B(u, r)]

≤
∑
i∈X

PrR,σ[R ∈ [d(u, i)± r] and Ei]

where Ei is the event that all vertices j ≤σ i s.t. j ∈ B(u,∆/2 + r) have d(j, B) > d(i, B) and
no vertex in B(u,∆/4 − r) should appear before i. Note that Ei doesn’t occur then i is not the
first vertex to shatter B(u, r). As in the multicut proof, we get a harmonic sum which starts at

1
|B(u,∆/2+r)| and ends at 1

|X|+1 . This proves the theorem.
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