Lecture 10.5: Bourgain's Theorem via Padded Decompositions.

20th Mar, 2015

We want to establish the following theorem

Theorem 1. Given any metric d over the vertices V, and given k pairs (s_i, t_i) , we wish to find a mapping $\phi: V \to \Re^K$ such that

1. $||\phi(u) - \phi(v)||_1 \le d(u, v)$ for all pairs u and v. 2. $d(s_i, t_i) \le O(\log k) ||\phi(s_i) - \phi(t_i)||_1$ for all i.

This was essentially proved by Bourgain. His proof was for the all pairs case (so $k = n^2$), and later London-Linial-Rabinovich and Aumann-Rabani extended it to general k. Below, we do not give their proof. But a different proof essentially due to Fakcharoenphol-Rao-Talwar and Calinescu-Karloff-Rabani. At the heart is the concept of **padded decompositions**.

Definition 1. Given a metric d over V, $a(\beta, \Delta)$ -padded decomposition of (V, d) is a distribution over partitions (V_1, \ldots, V_T) with the following two properties

- 1. The (weak) diameter of each V_i is at most Δ .
- 2. For any vertex v, $\mathbf{Pr}[B(u,r)]$ is shattened by the partition $\leq \beta \cdot \frac{4r}{\Delta}$

The weak diameter of a subset S is $\max_{u,v\in S} d(u,v)$, $B(u,r) := \{v : d(u,v) \leq r\}$ is the ball of radius r around u, and it's shattered by a partition if at least two parts have non-trivial intersection with it. Finally, a padded decomposition is said to be efficient if it can be efficiently sampled from.

In general, the above β is allowed to be a **function** parametrized by Δ which takes a vertex u as input. For the time being let's keep β to be fixed.

Let us first start with a connection to the low diameter decomposition lemma done in class last time. Consider a (β, Δ) -padded decomposition. As in the low-diameter-lemma, the diameter of each part is at most Δ (or 2R in the last class's notation). Let us now argue about the cross edges. Given any edge (u, v), the probability that (u, v) is a cross edge is at most the probability B(u, d(u, v))is shattered. Therefore, the expected cost of the cross edges is at most $\frac{4\beta}{\Delta} \sum_{e \in E} c_e d_e = \frac{4\beta L}{D}$. Thus, for the **uniform** sparsest cut problem, we get a randomized algorithm with expected sparsity $O(\beta)$ times the LP.

Padded Decompositions and Embedding into ℓ_1 . We now describe how padded decompositions imply embeddings in a fairly natural way. Our mapping ϕ will be a scaling of a direct sum of $\log D$ different ϕ_t 's where D is $\max_{u,v} d(u, v)$ and t runs from 1 to $\log D$. Each ϕ_t is an embedding defined as follows.

- 1. Sample a partition from the $(\beta, 2^t)$ -padded decomposition. Let T be the number of parts.
- 2. $\phi_t(u)$ is a *T*-dimensional vector corresponding to the different parts: it is 2^t corresponding to the part which contains u, and 0 otherwise.

Claim 1. For any two points u and v, $||\phi_t(u) - \phi_t(v)||_1 = 2^{t+1}$ for all $t < \log_2 d(u, v) - 1$.

Proof. Immediately follows from the fact that the diameter of every part is $\leq 2^t$ and if $t < \log_2 d(u, v) - 1$, then u and v cannot be in the same part, and so $||\phi_t(u) - \phi_t(v)||_1 = 2^{t+1}$. \Box

Claim 2. For any two points u and v, we have $\mathbf{Exp}[||\phi_t(u) - \phi_t(v)||_1] \leq \beta \cdot 8d(u, v).$

Proof. The probability u and v are in different parts is at most $4\beta d(u, v)/2^t$, and therefore the claim follows.

Now let us consider the embedding ϕ which takes the direct sum of all the ϕ_t 's. By Claim 1, we get

For any
$$u, v, ||\phi(u) - \phi(v)||_1 \ge \sum_{t=0}^{\log_2 d(u,v)-2} 2^{t+1} \ge \frac{d(u,v)}{4}$$
 (1)

By Claim 2, we get

For any
$$u, v$$
, $\mathbf{Exp}[||\phi(u) - \phi(v)||_1] \le 8d(u, v) \sum_{t=0}^{\log_2 D} \beta_t(u)$ (2)

Note that we have moved to the functional version of β which takes the diameter $\Delta = 2^t$ as a parameter, and u as the input. If β were just a 'scalar', so to speak, then we would get $8\beta \log_2 Dd(u, v)$ in the RHS. In sum, we get an embedding of d into ℓ_1 with distortion depending on the β -parameter of the padded decomposition. Next, we get a good padded decomposition for a general metric.

Good Padded Decompositions. We now describe a good padded decomposition by describing a randomized algorithm which generates samples from this.

- 1. Sample a random permutation σ of the points in V.
- 2. Sample $R \in [\Delta/4, \Delta/2]$ uniformly at random.
- 3. Define $V_i := \{v : d(i, v) \leq R\} \setminus \bigcup_{j \leq \sigma_i} V_j$.

It is clear that the diameter of every V_i is at most Δ ; indeed it is at most 2R. The next theorem shows it is a good padded decomposition. Let V(u) be the V_i that contains u.

Theorem 2. For any point
$$u$$
, $\mathbf{Pr}[B(u,r) \not\subseteq V(u)] \leq \frac{8r}{\Delta} \cdot \log\left(\frac{|B(u,\frac{\Delta}{2}+r)|}{|B(u,\frac{\Delta}{4}-r)|}\right)$

Before we prove the theorem, note that the RHS is non-trivial only for $r \leq \Delta/8$. Therefore, we can upper bound the RHS by $\frac{8r}{\Delta} \log \left(\frac{|B(u,\Delta)|}{|B(u,\frac{\Delta}{8})|} \right)$, and so in (2) we can substitute

$$\beta_t(u) = \log\left(\frac{|B(u, 2^t)|}{|B(u, 2^{t-3})|}\right)$$

which implies that the (2) translates to

For any
$$u, v$$
, $\mathbf{Exp}[||\phi(u) - \phi(v)||_1] \le 8d(u, v) \sum_{t=0}^{\log_2 D} \log\left(\frac{|B(u, 2^t)|}{|B(u, 2^{t-3})|}\right) \le 24\log n \cdot d(u, v)$

This proves the $O(\log n)$ -embedding of any metric onto ℓ_1 . We have now all the ingredients for Bourgain's theorem as mentioned in the first para – how will you get the $O(\log k)$? Note that we do not need an upper bound of (1) for all pairs but only the k-pairs (s_i, t_i) . We leave this as an exercise, and proceed to prove the theorem above.

Proof of Theorem 2. Let B denote the ball B(u,r). Let us consider a vertex i such that V_i is the first in σ -order to shatter B(u,r). For this to occur, we must have $d(u,i) - r \leq R$ and $R \leq d(u,i) + r$: the former since V_i intersects B(u,r) and the latter since it doesn't contain all of it. Since $R \in [\Delta/4, \Delta/2]$, we get that i must lie in the set $X := B(u, \Delta/2 + r) \setminus B(u, \Delta/4 - r)$.

Furthermore, in the random permutation σ , *i* must appear before any vertex in $B(u, \Delta/4 - r)$ should appear before *i*. Now we can make a similar calculation as done for the multicut problem.

$$\begin{aligned} \mathbf{Pr}[B(u,r) \not\subseteq V(u)] &= & \mathbf{Pr}_{R,\sigma}[\exists i \in X : V_i \text{ is the first in } \sigma \text{ to shatter } B(u,r)] \\ &\leq & \sum_{i \in X} \mathbf{Pr}_{R,\sigma}[V_i \text{ is the first in } \sigma \text{ to shatter } B(u,r)] \\ &\leq & \sum_{i \in X} \mathbf{Pr}_{R,\sigma}[R \in [d(u,i) \pm r] \text{ and } \mathcal{E}_i] \end{aligned}$$

where \mathcal{E}_i is the event that all vertices $j \leq_{\sigma} i$ s.t. $j \in B(u, \Delta/2 + r)$ have d(j, B) > d(i, B) and no vertex in $B(u, \Delta/4 - r)$ should appear before *i*. Note that \mathcal{E}_i doesn't occur then *i* is not the first vertex to shatter B(u, r). As in the multicut proof, we get a harmonic sum which starts at $\frac{1}{|B(u, \Delta/2 + r)|}$ and ends at $\frac{1}{|X|+1}$. This proves the theorem. \Box