Lecture 10.5: Bourgain’s Theorem via Padded Decompositions.

20th Mar, 2015

We want to establish the following theorem

Theorem 1. Given any metric d over the vertices V, and given k pairs (s;,t;), we wish to find a
mapping ¢ : V. — RE such that

1. ||¢(u) — o(v)|]1 < d(u,v) for all pairs u and v.
2. d(ss, 1) < O(log h)||6(s:) — S(to)llr for all i

This was essentially proved by Bourgain. His proof was for the all pairs case (so k = n?),
and later London-Linial-Rabinovich and Aumann-Rabani extended it to general k. Below, we
do not give their proof. But a different proof essentially due to Fakcharoenphol-Rao-Talwar and
Calinescu-Karloff-Rabani. At the heart is the concept of padded decompositions.

Definition 1. Given a metric d over V, a (8, A)-padded decomposition of (V,d) is a distribu-
tion over partitions (Vi,..., V) with the following two properties

1. The (weak) diameter of each V; is at most A.
2. For any vertex v, Pr[B(u,r) is shattered by the partition] < f3 - %

The weak diameter of a subset S is maxy yesd(u,v), B(u,r) := {v : d(u,v) < r} is the ball of
radius r around u, and it’s shattered by a partition if at least two parts have non-trivial intersection
with it. Finally, a padded decomposition is said to be efficient if it can be efficiently sampled from.

In general, the above § is allowed to be a function parametrized by A which takes a vertex u
as input. For the time being let’s keep 5 to be fixed.

Let us first start with a connection to the low diameter decomposition lemma done in class last
time. Consider a (3, A)-padded decomposition. As in the low-diameter-lemma, the diameter of each
part is at most A (or 2R in the last class’s notation). Let us now argue about the cross edges. Given
any edge (u,v), the probability that (u,v) is a cross edge is at most the probability B(u,d(u,v))
is shattered. Therefore, the expected cost of the cross edges is at most % Y ecp Cele = 4%L. Thus,
for the uniform sparsest cut problem, we get a randomized algorithm with expected sparsity O(/3)
times the LP.

Padded Decompositions and Embedding into ;. We now describe how padded decomposi-
tions imply embeddings in a fairly natural way. Our mapping ¢ will be a scaling of a direct sum of
log D different ¢;’s where D is max,,, d(u,v) and ¢ runs from 1 to log D. Each ¢; is an embedding
defined as follows.



1. Sample a partition from the (3,2!)-padded decompostion. Let T' be the number of parts.
2. ¢4(u) is a T-dimensional vector corresponding to the different parts: it is 2! corresponding to
the part which contains u, and 0 otherwise.

Claim 1. For any two points u and v, ||¢:(u) — ¢¢(v)||1 = 28 for all t < logy d(u,v) — 1.

Proof. Immediately follows from the fact that the diameter of every part is < 2¢ and if ¢t <
logy d(u,v) — 1, then u and v cannot be in the same part, and so ||¢;(u) — ¢¢(v)|]1 = 207 O

Claim 2. For any two points u and v, we have Expl||¢p:(u) — ¢e(v)|1] < B - 8d(u,v).

Proof. The probability u and v are in different parts is at most 43d(u,v)/2¢, and therefore the
claim follows. ]

Now let us consider the embedding ¢ which takes the direct sum of all the ¢;’s. By Claim [1} we

get
logg d(u,v)—2

For any w,v, [|¢p(u) —¢(v)||1 > Z ot > d(iz v) (1)
t=0
By Claim [2 we get
logy D
For any u,v, Exp[||¢(u) — ¢(v)|1] < 8d(u,v) Z Be(w) 2)
t=0

Note that we have moved to the functional version of B which takes the diameter A = 2¢
as a paramerter, and u as the input. If 8 were just a ‘scalar’, so to speak, then we would get
88 logy Dd(u,v) in the RHS. In sum, we get an embedding of d into ¢; with distortion depending
on the B-parameter of the padded decomposition. Next, we get a good padded decomposition for
a general metric.

Good Padded Decompositions. We now describe a good padded decomposition by describing
a randomized algorithm which generates samples from this.

1. Sample a random permutation o of the points in V.
2. Sample R € [A/4, A/2] uniformly at random.
3. Define V; := {v : d(i,v) < R}\U;< ; V;.

It is clear that the diameter of every V; is at most A; indeed it is at most 2R. The next theorem

shows it is a good padded decomposition. Let V' (u) be the V; that contains w.

A
Theorem 2. For any point u, Pr[B(u,r) Z V(u)] < % -log (M)
1

Before we prove the theorem, note that the RHS is non-trivial only for » < A /8. Therefore, we can

upper bound the RHS by %7" log (lg((s’ﬁ);'), and so in we can substitute
'8

_ |B(u, 2]
=1 (13053

2



which implies that the translates to

&l (B2
For any u,v, BExpl||¢(u) — ¢(v)||1] < 8d(u,v) ) log <|B(uzt3)|

> < 24logn - d(u,v)
t=0

This proves the O(logn)-embedding of any metric onto ¢;. We have now all the ingredients for
Bourgain’s theorem as mentioned in the first para — how will you get the O(log k)? Note that we
do not need an upper bound of for all pairs but only the k-pairs (s;,t;). We leave this as an
exercise, and proceed to prove the theorem above.

Proof of Theorem[9. Let B denote the ball B(u,r). Let us consider a vertex i such that V; is
the first in o-order to shatter B(u,r). For this to occur, we must have d(u,7) —r < R and
R < d(u,i) + r: the former since V; intersects B(u,r) and the latter since it doesn’t contain all of
it. Since R € [A/4,A/2], we get that ¢ must lie in the set X := B(u,A/2 4+ 1)\ B(u,A/4 —1).
Furthermore, in the random permutation o, ¢ must appear before any vertex in B(u, A/4 — 1)
should appear before i. Now we can make a similar calculation as done for the multicut problem.

Pr[B(u,r) Z V(u)] = Prry[3i € X :Vj is the first in o to shatter B(u,r)]
< Z Prp ,[V; is the first in o to shatter B(u,r)]
i€X
< Z Prr (R € [d(u,i) £ 7] and &]
1€ X

where &; is the event that all vertices j <, i s.t. j € B(u,A/2 + r) have d(j, B) > d(i, B) and
no vertex in B(u,A/4 — r) should appear before i. Note that & doesn’t occur then i is not the
first vertex to shatter B(u,r). As in the multicut proof, we get a harmonic sum which starts at

WM and ends at ﬁ This proves the theorem. ]



