
E0249 Approximation Algorithms
11 April, 2015

Lecture 14: Hardness of Approximation
Lecturer: Arnab Bhattacharyya Scribe: Anurita Mathur & Divya Ravi

14.1 Introduction

In previous lectures, we have seen techniques for designing good approximation algorithms. In this lecture, we move
to techniques for proving that problems are hard to approximate within certain factors. We will look at several ways
in which these results are proven. First is reduction from NP-complete problems. Second, we can see reductions from
other optimization problems. Third, we reduce from probabilistically checkable proofs or PCPs. These PCPs allow us
to prove hardness of approximation results for a number of particular constraint satisfaction problems. We can then
use approximation preserving reductions from these constraint satisfaction problems to derive hardness results for a
number of other problems. Fourth, we look at a particular problem called the label cover problem; reductions from
label cover problems are used to prove certain kinds of hardness results. Last, we can show reductions to problems
from the unique games problem, which gives hardness results conditional on the truth of the unique games conjecture.

14.2 Reduction from NP-complete problems

Definition 14.1. Reduction from A to B (A � B) :

Problem A is reducible to problem B if an algorithm for solving problem B efficiently(if it existed) could also be used
as a subroutine to solve problem A efficiently. When this is true, solving A cannot be harder than solving B. In these
reductions, a YES instance of A maps to a YES instances of B and NO instances of A maps to a NO instances of B.

14.2.1 Gap Problems

Gap problems are kind of a promise problem, i.e a problem where not all possible inputs are possible , only inputs that
satisfy a promise (say π(x) ≥ c or π(x) ≤ s). We define a [a,b]-Gap problem for the case of maximization as follows
: -

Definition 14.2. Given a maximization problem P and two real numbers 0≤ a ≤ b, the [a, b]-gap-P problem is the
taks of distinguishing between two cases: for an instance I of problem P :

• Opt(I) ≥ b

• Opt(I) < a

The instances satisfying the former case are the YES instances and the latter are the NO instances.

Theorem 14.3. If the [a, b]-Gap version of a problem P is NP-hard, then approximating OPT for that problem within
a factor of a

b is also NP-hard.

14-1

Lecture 14: Hardness of Approximation 14-2

Proof. For the maximization case, suppose there is an approximation algorithm C that, for every instance x, outputs
a
b OPT(x) ≤ C(x) ≤ OPT. Consider the algorithm that outputs YES if C(x) ≥ a, and NO otherwise. We claim that it
solves the [a, b]-Gap version of P .

• If OPT(x) ≥ b (the correct answer is ’YES’) , then necessarily

C(x) ≥ a

b
∗OPT (x) ≥ a

b
∗ b = a

Thus we answer ’YES’ which is correct.

• If OPT(x) < a (the correct answer is ’NO’) , then necessarily

C(x) ≤ OPT (x)<a

Thus we answer ’NO’ which is correct.

We now see an example of a polynomial time reduction:

14.2.2 Minimum Makespan Scheduling:

We are given m machines for scheduling, indexed by the set M={ 1,2,...m}. There are furthermore n jobs given by the
set J={ 1,2,...n} where job j takes pij units of time if job j is scheduled on machine i. Our objective is to minimize the
maximum processing time for any machine. We have seen a 2-factor algorithm for this General Assignment problem
(GAP) in one of the previous lectures.

Claim 14.4. There is a polynomial time reduction from 3D-MATCHING to [3,4-ε] gap scheduling problem.

Proof. Given an instance of 3D-MATCHING - sets A, B, C of n elements each and sets of m triples T1,...Tm ∈ A x B
x C . We first look at reduction to [3,4-ε]-Gap scheduling ∀ ε >0. The idea behind the reduction is: Given an instance
of 3-D MATCHING we can construct a scheduling input as follows. There is a job x for each of the 3n elements in
A ∪ B ∪ C, and there is a machine for each of the given m triples in F. For each job j that corresponds to an element
of the triple Ti, we set its processing time Pxj to 1, but otherwise we set the processing time to ∞. Thus, given a
3-D MATCHING, we can schedule all 3n of these jobs on n of the machines. This leaves m-n machines without any
assigned jobs and we complete the reduction by introducing m-n dummy jobs that require exactly 3 time units on each
machine i, i=1,....m.If m < n, we can construct some trivial ’no’ instance of the scheduling problem.
There is a schedule with makespan 3 if and only if there is a 3D Matching. Suppose there is a matching, we schedule
the jobs corresponding to the elements in Ti = (a, b , c) on machine i and schedule the dummy jobs on the m - n triples
not present in the matching. This gives a schedule with makespan 3. Now suppose there is such a schedule - Each of
the dummy jobs requires three time units on any machine and is thus scheduled by itself on some machine. Consider
the set of n machines that are not processing dummy jobs. Since these are processing all of the 3n element jobs, each
of these jobs is processed in one time unit. Each three jobs that are assigned to one machine must therefore correspond
to elements that form the triple corresponding to that machine. Since each element job is scheduled exactly once, the
n triples corresponding to the machines that are not processing dummy jobs form a matching.Thus for every ρ < 4

3 ,
there does not exist a polynomial ρ - approximation algorithm for the minimum makespan problem. As we know,
approximating for a problem within a factor of a

b is NP-hard if the [a, b] gap version of the problem is hard ; we have
reduced to [3, 4 - ε] version. In other words, now we can claim that if the reduction outputs YES instance of [3,4-ε]
gap, then pre image must be YES instance of 3D-MATCHING.

Lecture 14: Hardness of Approximation 14-3

Using the same technique as above , we can refine it to yeild a stronger result .

Claim 14.5. There is a polynomial time reduction from 3D-MATCHING to [2,3-ε] gap scheduling problem.

Proof. In this case , the reduction is as follows - There is a job x for each element of B and C. If we let each dummy
job take 2 time units on each machine, we have the property that if there is a 3-D MATCHING, then there is a schedule
of length 2. The reduction is as follows : Say we call the triples that contain aj triples of type j. Let tj be the number
of triples of type j for j = 1 , . . . , n. As before, machine i corresponds to the triple Ti for i = 1 , . . . , m. There are
now only 2n element jobs, corresponding to the 2n elements of B ∪ C. We refine the construction of the dummy jobs:
there are ti - 1 dummy jobs of type j forj = 1 , . . . , n. (Note that the total number of dummy jobs is m - n, as before)
Machine i corresponding to a triple of type j, say = (aj , bk, cl) , can process each of the element jobs corresponding
to bk and ct in one time unit and each of the dummy jobs of type j in two time units; all other jobs require three time
units on machine i. Suppose there is a matching. For each Ti= (aj , bk, cl) in the matching, schedule the element jobs
corresponding to bk and cl on machine i. For each j, this leaves tj - 1 idle machines corresponding to triples of type
j that are not in the matching; schedule the tj-1 dummy jobs of type j on these machines. This completes a schedule
with makespan 2. Conversely, suppose that there is such a schedule. Each dummy job of type j is scheduled on a
machine corresponding to a triple of type j. Therefore, there is exactly one machine corresponding to a triple of type
j that is not processing dummy jobs for j = 1 , . . . , n. Each such machine is processing two element jobs in one
time unit each. If the machine corresponds to a triple of type and its two unit-time jobs correspond to bk and cl, then
(aj , bk, cl) must be the triple corresponding to that machine. Since each element job is scheduled exactly once, the n
triples corresponding to the machines that are not processing dummy jobs form a matching. Thus it follows from the
above that for every ρ < 3

2 , there does not exist a polynomial ρ - approximation algorithm for the minimum makespan
problem. As we know, approximating for a problem within a factor of a

b is NP-hard if the [a, b] gap version of the
problem is hard ; we have reduced to [2, 3 - ε] version. In other words, now we can claim that if the reduction outputs
YES instance of [2,3-ε] gap, then pre image must be YES instance of 3D-MATCHING.

14.3 Reduction from Optimization Problems

In this section we look at reductions from some standard optimization problems. We also turn to the idea of an
approximation-preserving reduction. In such reductions, we reduce a problem π to π’ so that if there exists an α-
approximation for π’ , we can get a f(α)-approximation algorithm for π, where f is some function. Then if we
know that π is hard to approximate to within some factor, the reduction implies that the problem π’ is also hard to
approximate within some factor. We look at one such reduction -

Figure 14.1: MAX 3-SAT to IND SET reduction

Theorem 14.6. If MAXIMUM INDEPENDENT SET has an α-approximation then so does MAX 3-SAT.

Proof. We reduce an instance of MAX 3-SAT to an instance of Max Independent set as follows : Suppose we have an
instance F = C1 ∧ C2 ∧ . . . ∧ Cm, where Ci is the disjunction of 3 variables, drawn from x1, x2, . . . , xn and their

Lecture 14: Hardness of Approximation 14-4

negations, ¬(x1), ¬(x2), . . . , ¬(xn). We create the graph G as follows: For each variable in each clause, create a node,
which we will label with the name of the variable. Therefore there may be multiple nodes with the label xi or ¬(xi),
if these variables appear in multiple clauses. For each clause, add an edge between the three nodes corresponding the
variables from that clause. These three nodes and three edges are referred to as clause gadget. Finally, for all i, add
an edge between every pair of nodes with one labeled xi and the other labeled ¬(xi). The figure below shows the
reduction for the three clauses (x1 ∨ ¬(x2) ∨ x3), (¬(x1) ∨ x2 ∨ ¬(x4)), (x1 ∨ ¬(x3) ∨ x5). Given any solution to
an independent set instance, we can obtain a solution for 3-SAT by setting to true any xi whose corresponding literal
node is in the independent set. This leads to a consistent assignment to the variables since there is an edge between
each variable and its complement. If for some variable, neither itself nor its complement is in the independent set, we
can set it arbirarily. Atmost one literal node can be in the independent set for each clause; we satisy as many clauses
as there are nodes in the independent set.Similarly given any solution to 3-SAT , for each satisfied clause we pick a
literal that satisfies the clause and put the corresponding node in the independent set. Thus size of the optimal solution
is the same .If there exists an independent set of size m , then there exists a satisfying assignment for the m clauses
of the 3-SAT instance. Therefore, this is an approximation-preserving reduction - Any α approximation algorithm for
MAX independent set yields an α approximation algorithm for MAX 3-SAT.

Theorem 14.7. If MAXIMUM INDEPENDENT SET has an α approximation for any α > 0,then it has a
√
α approx-

imation.

Proof. Suppose we are given an α approximation algorithm for the maximum independent set problem, and we have
an input graph G.We would like to find a solution of atleast

√
α k, where k is the size of the maximum independent

set in G. To do this, we create a new graph G x G ,with a vertex set V’=VxV and an edge set E’ in which there is an
edge between (u1,u2) ∈ V’ and (v1,v2) ∈ V’ if either (u1,v1) ∈ E or (u2,v2) ∈ E.

Given an independent set S in G, we claim that S x S is an independent set in G x G ;this follows since for any
(u1,u2),(v1,v2) ∈ S x S,both (u1,v1) 6= E and (u2,v2) 6= E since S is independent. Furthermore, given an independent
set S’ ⊆ V’ in G x G , we claim that both S1={u ∈ V:∃ (u,w) ∈ S’} and S2={u ∈ V:∃ (w,u) ∈ S’} are independent
sets in G. If both u,v ∈ S1, then there exists (u,w1),(v,w2) ∈ S’. Since S’ is independent there can be no edge (u,v) ∈
E. Thus given an independent set S in G, we can find an independent set of size atleast k2 in G x G. Also, given an
independent set S’ in G x G, it is the case that S’ ⊆ S1 x S2, so that ‖S′‖ ≤ ‖S1|‖S2|; if we take the larger of the two
sets S1 and S2, then we have an independent set in G of size atleast

√
k .

Given an α approximation algorithm for the maximum independent set problem and an instance G ,we construct the
graph G x G , use the approximation algorithm to find an independent set S’ in G x G of size atleast αk2, then use
this to find an independent set of size S in G of size atleast

√
αk. Thus,this is an

√
α-approximation algorithm for the

maximum independent set problem

14.4 Probabilistically Checkable Proofs:

Probabilistically Checkable proofs give us a direct way to show that certain constraint satisfaction problems cannot
have particular performance guarantees unless P = NP. Let us recollect that NP is the set of problems that have a
polynomial time verifier.

Definition 14.8. Verifier is an algorithm V that takes as input instance x and proof π.

• If x is a YES instance,there is a proof π such that V(x,π)=YES.

• If x is a NO instance,then ∀ proofs π V(x,π)=NO

Now let us look at the randomized concept of a verifier that only examines some number of bits of the proof and
accepts/rejects based on computation on only some randomly chosen bits. Formalizing this below -

Lecture 14: Hardness of Approximation 14-5

Local Verifier: Verifier has randomness r(n) and query complexity q(n) if it chooses q(n) locations in π using r(n)
coin tosses, then queries π on those q(n) locations and returns YES or NO.

Definition 14.9. Probabilistically Checkable Proofs (PCP) :
Problem A is in PCPc,s [r(n),q(n)] if ∃ polynomial time verifier of randomness r(n) and query complexity q(n) such
that

• If x is a YES instance, there is a proof π such that Pr[V (x, π) = Y ES] ≥ C

• If x is a NO instance, then ∀ proofs π, Pr[V (x, π) = Y ES]<S

The parameter C and S are called the completeness and soundness of the verifier. It is possible to capture the class NP
with a verifier that looks at just some small constant number of bits of the proof while using only a logarithmic amount
of randomness. We see a formal result of this below.

Theorem 14.10. PCP Theorem - NP ⊆ PCP1, 12
[O(logn), O(1)]

The PCP theorem basically says that for every NP language L, there is an efficient randomized verifier that queries
O(1) proof symbols and :

• x ∈ L - There exists a proof that is always accepted.

• c /∈ L - For any proof , the probability to accept is ≤ 1
2

We see few results based on PCPs.

Claim 14.11. Suppose [a,1]-gap 3-SAT is NP-hard then NP ⊆ PCP1,a[O(log n),3]

Proof. Let A be a problem in NP and there is a polynomial reduction to [a,1]-gap 3-SAT. Let x be any input. First
we reduce x to an instance φ of 3-SAT that is satisfiable iff x ∈ L. As a membership proof for x, the verifier expects a
satisfying assignment for φ. Given such a membership proof , it does a probabilistic check on it by randomly choosing
a clause in φ and querying the the values of the three variables involved in that clause. It accepts if and only if the
clause is satisified. Clearly if x∈ L , then a satisying assignment for φ will cause the verifier to accept with probability
1. On the other hand, if x /∈ L, then every assignment will satisfy less than fraction a of the clauses , so the verifier
accepts with probability less than a. Verifier uses O(log n) random bits to make three queries. Therefore by the above
notation as used in PCP theorem NP ⊆ PCP1,a[O(log n),3].

Lemma 14.12. Suppose NP ⊆ PCP1,a[O(log n),O(1)] then [a’,1] gap 3-SAT is NP-hard for some a’ < 1.

We will see a formal proof of the above and further details regarding PCP in the next lecture.

References

[2010] DAVID P. WILLIAMSON and DAVID B.SHMOYS, “The Design of Approximation Algorithms” Cam-
bridge University Press

