
Approximation Algorithms

EO249

(Problem Set 5) Due: Mar 13th, 2015

Solutions need to be submitted by email to eo249iisc@gmail.com. We prefer latexed solution. Before

giving the solutions, you should write how many problems you have attempted and how many you think you

have solved. Starred problems are optional and (possibly) more fun.

Exercise 1. Consider the following LP for the knapsack problem

max

n∑
i=1

pixi

such that

n∑
i=1

wixi ≤ B

0 ≤ xi ≤ 1, ∀i

Here pi and wi are the profits and weights of the ith item. We may assume wi ≤ B for all i.

• Let x be an optimal basic feasible solution to the above LP. What can you say about the set
{i : 0 < xi < 1}?

• Can you use this to argue the integrality gap of the LP ≤ 2? Can you prove a lower bound
on the integrality gap?

• Can you use the above to design a PTAS for the knapsack problem, that is an (1 + ε)-
approximation running in time nf(ε) for some function f?

Exercise 2. In the survivable network design problem (SNDP), we are given an undirected graph
G with costs on edges. We are also given source-sink pairs (si, ti) and an integer ri associated with
each pair. The goal is to construct a minimum cost subgraph H of G such that for each i, there
exists at least ri edge-disjoint paths from si to ti. In this exercise we design a 2-approximation
for the problem.

1. Define the following set function r(S) := maxi:|S∩{si,ti}|=1 ri. Prove that r is weakly super-
modular, that is, for any two subsets A and B one of the two holds:

r(A ∪B) + r(A ∩B) ≥ r(A) + r(B)

r(A \B) + r(B \A) ≥ r(A) + r(B)
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2. Consider the following LP relaxation for the problem.

min
∑
e∈E

cexe

such that x(δ(S)) ≥ r(S) ∀S ⊆ V
xe ≥ 0

where, δ(S) is the set of edges with exactly one endpoint in the set S and x(δ(S)) is the
shorthand for

∑
e∈δ(S) xe. Prove that the above is a relaxation to the problem. Describe a

separation oracle for the problem, that is, given any xe’s describe an efficient algorithm which
either proves x is feasible, or demonstrates a set S violating the inequality.

3. Prove that for any xe’s, and any subset A,B ⊆ V , we have

x(δ(A ∪B)) + x(δ(A ∩B)) ≤ x(δ(A)) + x(δ(B))

and
x(δ(A \B)) + x(δ(B \A)) ≤ x(δ(A)) + x(δ(B))

Note the change in the inequality directions as opposed to (1). Furthermore, show the fol-
lowing. Given subset S ⊆ V , let χS be the row corresponding to the constraint S in the LP
above. Then the above inequalities hold with equality only if χA + χB = χA∪B + χA∩B for
the first inequality and χA + χB = χA\B + χB\A.

4. Let x be a basic feasible solution to the above LP. Call a set S tight if and only if
∑

e∈δ(S) xe =
r(S). Let F be the collection of tight sets. Prove that if S, T ∈ F , then either S ∪ T, S ∩ T
are in Fand χS + χT = χS∪T + χS∩T , or S \ T, T \ S are in F and χS + χT = χS\T + χT\S .
You may assume (1),(3) for this.

5. A collection L of subsets of V is laminar if for any two sets S, T ∈ L, either S ∩ T = ∅, or
S ⊆ T or T ⊆ S. Show that there exists a laminar family L in F such that for any T ∈ F ,
χT can be expressed as a linear combination of the rows {χS : S ∈ L}. This shows that the
rank of the submatrix of tight equalities corresponding to x is at most |L|.
Hint: Consider a maximal laminar subcollection of F , that is, a laminar family L such that
for every set S ∈ F \ L, there exists T ∈ L with S ∩ T 6= ∅ and is a strict of S and T .

6. Use the proof technique from the tree augmentation problem done in class, to prove that
some xe ≥ 1/2. Can you see the similarity between laminar families and rooted trees?
Hint: For every edge e ∈ E, put at most one unit of charge on certain sets in L. In particular,
for e = (u, v), consider the minimal set which contains just u, just v, and both u and v.
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