E0234 Randomized Algorithms

Endterm

27th Apr, 2016

Good luck!

- 1. (10 points.) Suppose we get k i.i.d. samples X_1, \ldots, X_k from a distribution with mean μ and std dev σ , both of which are *unknown*. We have seen that $Z := \frac{1}{k} \sum_{i=1}^{k} X_i$ is an unbiased estimator of μ . Describe an unbiased estimator of the variance, σ^2 .
- 2. (10 points) A is an array of n distinct numbers. Consider the following algorithm to estimate the approximate median of A: sample k entries of A uniformly at random to get the set R and return r, the median of R. We wish to have the following guarantee:

$$\mathbf{Pr}\left[\mathsf{rank}(r) \in \left[\frac{n}{2} - \varepsilon n, \frac{n}{2} + \varepsilon n\right]\right] \ge 1 - \delta$$

where rank(r) is the index of r in the sorted array A. How big does k need to be in terms n, ε and δ ?

3. (15 points)

- (a) (5 points) Let $X_0 = 0$, and for $j \ge 0$, let X_{j+1} be chosen uniformly from the real interval $[X_j, 1]$. Show that the sequence $Y_k = 2^k(1 - X_k)$ is a martingale.
- (b) (10 points) Suppose G = G(n, dn) is a random graph with n vertices and dn edges chosen uniformly at random among all possible edges. Let MC_n denote the size of the maximum cut in G. Prove that with constant probability,

$$1 - \frac{4}{\sqrt{dn}} < \frac{MC_n}{\mathbf{E}[MC_n]} < 1 + \frac{4}{\sqrt{dn}}$$

4. (10+5 points) Let P be an undirected path starting from vertex 1 on the left to vertex n in the right. Given a permutation π of $\{1, 2, ..., n\}$, orient the edges of P as follows: (i, i + 1) is oriented from left to right if $\pi(i) < \pi(i + 1)$, and right to left otherwise. Let Z_{π} denote the length of the longest left-to-right directed path in this orientation of P.

- (a) Find the largest k such that $\Pr[Z_{\pi} \ge k] \ge 1/2$, where the probability is over a uniformly chosen random permutation π . We are interested in the asymptotic relationship between k and n, if any.
- (b) **Bonus 5 points.** How will you use the above fact to design an algorithm to find long paths in Hamiltonian graphs?
- 5. (15 points) Let G be an undirected, non-bipartite and connected graph with n vertices. Consider two independent random walks starting at two nodes u and v respectively. Show that the expected number of steps for the two walks to meet is $O(n^6)$.
- 6. (20 points.) Let A be an $n \times n$ matrix with $|A_{ij}| \le 1$ entries. In class, we showed the existence of $x \in \{\pm 1\}^n$ such that $||Ax||_{\infty} \le \sqrt{2n \ln(2n)}$. In this problem we see a better result in case A is row and column sparse. Suppose A has at most k non-zero entries in each row and column.
 - (a) (5 points) Let x be a random $\{\pm 1\}^n$ vector. For any fixed row i, upper bound the probability that $|a_i^{\mathsf{T}} x| \ge \beta$ where a_i is the *i*th row of A.
 - (b) (5 points) Prove there exists a ± 1 vector x with $||Ax||_{\infty} = O(\sqrt{k \ln n})$.
 - (c) (10 points) Prove there exists a ± 1 vector x with $||Ax||_{\infty} = O(\sqrt{k \ln k})$. Hint: LLL.