
E0234: Solution Sketch of Assignment 3

February 8, 2016

It is highly recommended you do not google for the answers to the questions below. You can
discuss with your friends, but then mention that in your submission. The writing should solely be
your own.

0. (Not to be submitted but recommended.) Implement the randomized median finding
algorithm where the sorting algorithm is also implemented by you. Your sorting algorithm
should also keep account of number of array comparisons it makes. Run the algorithm on an
array of a million entries where each entry is a random real between 0 and 100. Compare
the time and number of comparisons that the randomized median finding algorithm makes
with the those of (a) the naive algorithm which just sorts (using your sorting implementation)
and returns the middle entry, and (b) The Find algorithm done in class. Do you see a big
difference?

1. (From high probability to expectation.) In class, we proved that the randomized median
finding algorithm found the median with 2n + o(n) comparisons with probability 1 − o(1).
Solution sketch: Follows immediately from the fact that the random variable denoting the
number of times the “outer loop” of the algorithm “fails” is a geometric random variable with
rate 1 − o(1).

2. Prove that the expected running time of the Find subroutine done in class (see MR, Chap
1.4) is O(n).
Solution sketch: Enough to prove that the number of comparisons made by the algorithm
is O(n). Prove that the expected running time of the algorithm is also 2n + o(n). Let X be
the random variable counting the number of comparisons made by the algorithm. Let Xij be
the indicator random variable for the event that ith and jth element (in the sorted order) are
compared by the algorithm for 1 ≤ i < j ≤ n. Then we have the following.

Xij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ber( 2
j−k+1) if k ≤ i < j

Ber( 2
k−i+1) if i ≤ j < k

Ber( 2
j−i+1) if i ≤ k < j

We now have the following.
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X = ∑
1≤i<j≤n

Xij

E[X] = ∑
1≤i<j≤n

E[Xij]

=
k−1
∑
i=1

k−1
∑

j=i+1

2

k − i + 1
+

n

∑
j=k+1

j−1
∑
i=k

2

j − k + 1
+

k

∑
i=1

n

∑
j=k

2

j − i + 1

≤
k−1
∑
i=1

2 +
n

∑
j=k+1

2 + 2n

≤ 4n

The second inequality follows from the fact that ∑k
i=1∑n

j=k
2

j−i+1 ≤ 2n since each 2
j−i+1 term

appears exactly j − i + 1 many times in the summation and we have 1 ≤ j − i + 1 ≤ n.

3. (Non-uniform Birthday Paradox.) Consider m balls being thrown randomly into n bins,
however, the distribution is not uniformly at random. In particular, each ball lands in bin
1 with probability p1, bin 2 with probability p2, and so on, where p ∶= (p1, . . . , pn) is a
probability vector with ∑n

i=1 pi = 1 and pi ≥ 0 for all i. What is the smallest m for which
you can say that there would be at least one bin with at least 2 balls with probability > 1/2?
Hint: Observe that if all pi = 1/n, this is the birthday paradox question, and so m ≈

√
2n.

Also note that if some pi is close to 1, then the required m = O(1).
Solution sketch: Let Xij be the indicator random variable for the event that balls i and j
collide for 1 ≤ i < j ≤ m. Then Xij ∼ Ber(∣∣p∣∣22). Let us define X = ∑1≤i<j≤mXij . Then we
have the following.

E[X] = (m
2
)∣∣p∣∣22

V ar(X) ≤ (m
2
)∣∣p∣∣22 +

m3

6
∣∣p∣∣33

Now we have the following from Chebyshev.

Pr[X > 0] ≥ Pr[∣X −E[X]∣ < E[X]] ≥ 1 − 1

(m
2
)∣∣p∣∣22

− m3∣∣p∣∣33
6(m2 )

2∣∣p∣∣42

From the inequality above, there exists a constant c > 0 such that for m > c
∣∣p∣∣2 , we have the

probability that at least one bin with at least 2 balls is at least 1
2 .

4. (Variance of QuickSort.) Compute the variance of the number of comparisons made by
the QuickSort algorithm. We are looking for the correct order of magnitude and not the exact
constants. Hint: Recall the computation of the expectation from the 1st lecture. Apply first
principles.
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Solution sketch: Let X be the random variable counting the number of comparisons made
by the algorithm. Let Xij be the indicator random variable for the event that ith and jth

element (in the sorted order) are compared by the algorithm for 1 ≤ i < j ≤ n. Then we know
that Xij ∼ Ber( 1

j−i+1). From definitions we have the following.

X = ∑
1≤i<j≤n

Xij

V ar(X) = ∑
1≤i<j≤n

V ar(Xij) + ∑
1≤i<j≤n,1≤k<`≤n

Cov(Xij ,Xk`)

V ar(X) ≤ ∑
1≤i<j≤n

E(Xij) + ∑
1≤i<j≤n,1≤k<`≤n

Cov(Xij ,Xk`)

V ar(X) ≤ n logn + ∑
1≤i<j≤n,1≤k<`≤n

Cov(Xij ,Xk`)

Now we compute Cov(Xij ,Xk`) for 1 ≤ i < j ≤ n,1 ≤ k < ` ≤ n by the following case analysis.
Let the sorted array be A[1 . . . n].

• Case 1: 1 ≤ i < j < k < ` ≤ n

Cov(Xij ,Xk`) = 0 since Xij and Xk` are independent in this case.

• Case 2: 1 ≤ k < i < ` < j ≤ n

Cov(Xij ,Xk`) = E[XijXk`] −E[Xij]E[Xk`]
= Pr[k is chosen first in A[k . . . j]] ⋅ Pr[i or j is chosen first in A[i . . . j]]
+Pr[k is chosen first in A[k . . . j]] ⋅ Pr[k or ` is chosen first in A[k . . . `]]

− 4

(j − i + 1)(` − k + 1)

= 2(` − j + k − i)
(j − k + 1)(j − i + 1)(` − k + 1)

≤ 0

• Case 3: 1 ≤ i < k < j < ` ≤ n

Following argument along the line same as case 2, we have: Cov(Xij ,Xk`) ≤ 0.

• Case 4: 1 ≤ k < i < j < ` ≤ n

Following argument along the line same as case 2, we have: Cov(Xij ,Xk`) = 0.

• Case 5: 1 ≤ i = k < ` < j
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Cov(Xij ,Xk`) = E[XijXk`] −E[Xij]E[Xk`]
= Pr[j is chosen first in A[k . . . j]] ⋅ Pr[k or ` is chosen first in A[k . . . `]]
+Pr[i is chosen first in A[i . . . j]]

− 4

(j − i + 1)(` − k + 1)

= 1

j − i + 1
− 3

(j − i + 1)(` − i + 1)

≤ 1

j − i + 1

Hence, we have the following.

∑
1≤i<j≤n,1≤k<`≤n

Cov(Xij ,Xk`) = ∑
1≤i<j≤n

∑
1≤k<`≤n

Cov(Xij ,Xk`)

≤ ∑
1≤i<j≤n

1

≤ n2

Hence, V ar(X) = O(n2).
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