What I know after taking CS 31

The document summarizes a subset of things which you should be knowing after taking CS 31.

1. Worst Case Running Time.
 - Computational problem Π has instances/inputs I; each input I has solution/output S.
 - An algorithm A for Π takes $I \in \Pi$ and returns its solution S.
 - Each instance $I \in \Pi$ has a notion of size $|I|$.
 Often, this is the number of bits required to describe I.
 - The running time of algorithm A on I is denoted as $T_A(I)$.
 - The worst case running time of A as a function of size is defined to be
 $$T_A(n) := \max_{I \in \Pi: |I| \leq n} T_A(I)$$

2. The Big-Oh Notation.
 - Useful notation to tell the “big picture” without worrying about annoying details.
 - $g(n) \in O(f(n))$ if $\exists \ a, b > 0$ such that for all $n \geq b$, $g(n) \leq a \cdot f(n)$.
 - $g(n) \in \Omega(f(n))$ if $\exists \ a, b > 0$ such that for all $n \geq b$, $g(n) \geq a \cdot g(n)$.
 - $g(n) \in \Theta(f(n))$ if $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$.
 - Often the \in is replaced by $=$; so we would say $T(n) = O(n^2)$ to imply $T(n) \in O(n^2)$.

3. Divide and Conquer.
 - Break a problem into two, recursively solve, combine solutions.
 - Often works for speeding up algorithms for which a not-so-bad naive solutions exist.
 - Problems seen: Merge Sort, Counting Inversions, Maximum Range Sum, Polynomial Multiplication, Closest Pair of Points, many others in the Psets.
 - Analysis Tool: Master Theorem.

 - Smart Recursion / Recursion with Memory.
 - Think of optimum solution; see if solution can be built by combining solutions of smaller subproblems.
 - Smaller subproblems should be “succinctly representable”. The value should be defined by a “function” on not too many parameters. Function should have a recurrence relation.
 - 7-step way:
 - Definition of the function.
 - Base Cases.
 - Recurrence.
Proof of Recurrence.
Pseudocode.
Recovery Pseudocode
Runtime and space.

- Problems Seen: SUBSET SUM, KNAPSACK, LONGEST COMMON SUBSEQUENCE, many others in the Psets.

5. **Randomized Algorithms.**

- Algorithms which can toss independent coins.
- Monte Carlo Algorithms: can be wrong with some teeny probability
- Las Vegas Algorithms: can have random running times.
- Problems Seen: CHECKING MATRIX MULTIPLICATION (Monte Carlo), QUICK SORT (Las Vegas)
- Hashing. Universal Hash Functions. Using randomization to have low expected query times.
- Perfect Hashing. Using randomization to pick collision-free hash functions fast.
- Estimating Frequencies in Data Stream using Hashing: most modern thing seen in course!

6. **Depth First Search.**

- Revisiting an old algorithm.
- Lots of power in the first and last’s returned.
- Applications: CONNECTIVITY, CYCLE?, TOPOLOGICAL ORDER of DAGs, STRONGLY CONNECTED COMPONENTS, 2SAT. All linear time!
- You should know how to implement this in any programming language.

7. **Breadth First Search.**

- Shortest hop-length walks in $O(n + m)$ time.
- Queue implementation of visited vertices.
- Useful for checking BIPARTITE?.
- You should know how to implement this in any programming language.

8. **Dijkstra.**

- Clever generalization of BFS which works when graphs have positive cost edges.
- Doesn’t add everything in queue once distance label updated. Only the “smallest” such vertex added.
- Runs in $O(m + n \log n)$ time using Fibonacci heaps. Or in $O(m \log n)$ time using usual heaps.
- Can be used to find shortest length cycles (this was done in problem set).
9. **Bellman-Ford.**

- You should know how to implement this in any programming language.
- In graphs with possibly negative cost edges, this algorithm either detects negative cost cycles, or figures out shortest paths.
- Finds shortest cost walks whose lengths are bounded. In case of no negative cost cycles, shortest walks are shortest paths.
- Dynamic program. Runs in \(O(mn)\) time.
- No one knows how to make it run faster.
- All pairs shortest paths can be found in \(O(n^3)\) time (this was done in a problem set.)
- You should know how to implement this in any programming language.

10. **Flows and Cuts.**

- Max Flow: send as much “stuff” as possible from source to sink with no excesses in any internal node.
- Min Cut: minimum capacity edges whose removal disconnects source and sink.
- Maximum \(s, t\)-flow equals Minimum \(s, t\)-cut. Deepest fact uncovered in the course.
- Residual Networks! A major idea.
- Ford-Fulkerson Algorithm: Keep augmenting flow in the residual network.
- Can make it faster*: (a) augment flow on max-capacity path, (b) augment flow on shortest length path.
- Plenty of applications: Bipartite Matching, Load Balancing, Project Selection. Minimum \(s, t\)-cut can find a “cheapest subset” among all subsets fast – very, very useful tool!

11. **Reductions and Hardness*.**

- Decision Problems: \(\Pi\), each instance has solution YES or NO.
- Polytime Algorithm: running time less than some fixed polynomial of size of the instance.
- \(\Pi_A \preceq_{\text{poly}} \Pi_B\) if there is an efficient algorithm taking YES instances of \(\Pi_A\) to YES instances of \(\Pi_B\), and vice-versa.
- \(\Pi_A \preceq_{\text{poly}} \Pi_B\): \(\Pi_A\) is “easier/no harder” than \(\Pi_B\). If \(\Pi_B\) has a polytime algorithm, so does \(\Pi_A\); if \(\Pi_A\) has no polytime algorithm, neither does \(\Pi_B\).
- \(P\): class of all polynomial time solvable problems.
- \(NP\): class of all polynomial time verifiable problems.
- \(NP\)-hard: \(\Pi\) is \(NP\)-hard if \(\Pi' \preceq_{\text{poly}} \Pi\) for any \(\Pi' \in NP\).
- \(SAT\) is an \(NP\)-hard problem.