
CS 31: Algorithms (Spring 2019): Lecture 11
Date: 30th April, 2019

Topic: Graph Algorithms 1: Depth First Search
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please notify errors on Piazza/by email to deeparnab@dartmouth.edu.

1 Depth First Search (DFS)

We start graph algorithms with the pretty intuitive, but surprisingly powerful, depth first
search (DFS). This algorithm solves the reachabilty problem, but then in one swoop solves
much more. It also runs in Θ(n+m) time. Let’s get to it.

1.1 DFS from a vertex

The objective for this section is to solve the reachability problem: given vertices u and v,
is there a path from u to v in G? The algorithm is the same for solving mazes: we start at
vertex u first planting a flag there; subsequently, we visit any unflagged neighbor x of u
unraveling a thread to remembering we came to x from u, and repeat the procedure from
x; if at any time we are stuck with flags all around, then we ravel the thread back to the
place where we came from. Formally, we use recursion.

1: global visited[1 : n] initialized to 0.
2: global Tree F initialized to ⊥.
3: procedure DFS(G, v): . We assume V = {1, 2, . . . , n}
4: . Returns a tree F rooted at v
5: visited[v]← 1. . Mark v visited.
6: Add vertex v to F .
7: for u neighbor of v do: . In an arbitrary, but fixed order
8: if visited[u] = 0 then:
9: Add edge (v, u) to the tree F .

10: DFS(G, u)
11: return F

b
Exercise: Please draw a directed graph G and run the above pseudocode by hand to get a feel
for it.

Once we run DFS(G, v), we obtain the object F . The next claim tells us that F contains
all the vertices reachable from v.
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Claim 1. Upon running DFS(G, v), we have visited[x] = 1, or equivalently x ∈ F , if and
only if x is reachable from v. Furthermore, x is a descendant of v in F in this case.

Although the above may seem obvious, it does require a formal proof. And we pro-
vide one below.

Proof. First we prove if visited[x] = 1, then x is reachable from v, in fact, using edges in F .
The proof is by induction on the time at which visited[x] was set to 1. Imagine every time
the algorithm runs Line 5, we increment time by 1. At time 0, this was set visited[v] = 1
and v is reachable from v in F . Now pick a vertex x whose visited[x] = 1 is set at time t.
This happens because of some y ∈ V such that (a) (y, x) ∈ E, and (b) the run of DFS(G, y)
calls DFS(G, x). In that case, (a) visited[y] = 1 has been set strictly before time t implying,
by Induction, y is reachable from v in F , and (b) we add edge (y, x) to F , which then
implies x is reachable from v in F .

Now for the other direction. Suppose there exists a vertex x which is reachable from v
in G but visited[x] = 0. Since x is reachable from v, there is a path (v = v0, v1, . . . , vk = x)
in G. Let us pick the last vertex vi in this path which has visited[vi] = 1; clearly 0 ≤ i < k.
Since visited[vi] = 1, we have run DFS(G, vi). But the for-loop in the algorithm would
then call DFS(G, vi+1) since visited[vi+1] = 0. But that would set visited[vi+1] = 1, and
once visited a vertex is never “un-visited”. This is a contradiction, and thus all vertices x
reachable from v have visited[x] = 1.

Claim 2. F is a tree.
b

Exercise: Prove the above formally like the previous claim. Practice writing proofs.

Theorem 1. The REACHABILITY problem can be solved in Θ(n+m) time.

Proof. To solve the reachability problem, we just run DFS from u and check if visited[v] = 1
or not. To get the path, we can use the tree F . The running time is Θ(n + m) since every
edge is considered in the for-loop at most twice (once if G is directed). To see it in a
“different” way, the running time in the for-loop at most the sum of degrees (out-degrees,
if directed).

1.2 DFS on the whole graph

The next algorithm is a traversal over all vertices of the graphs using the subroutine
DFS(G, v). This is called the depth first traversal algorithm of the graphG, but is also called
the depth first search of G. The input to this algorithm is the graph G and a permutation
σ of the vertices. This permutation tells the algorithm the order in which to “explore”
vertices, that is, to run DFS(G, v).

The output to this algorithm has a lot of things; these objects contain surprising amounts
of information about G, as we will see below.
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• One output is a couple of vectors first[1 : n] and last[1 : n] where for any vertex
v, first[v] notes the “time” at which the algorithm starts exploring from v, that is,
DFS(G, v) is called, and last[v] denotes the “time” the exploring ends, that is, the
subroutine DFS(G, v) terminates.

• The other output is a forest F spanning all the vertices of G. Each tree in the forest
is rooted, and is assumed to be directed (even when G is not) away from the root.
Together with this we store the scalar fcomp which counts the number of trees in
F , the array root[1 : fcomp] where root(i) will store the root of the ith tree in F ,
and the array Fcomp[1 : n] where Fcomp[v] contains a number between 1 and fcomp
indicating the tree in which v exists.

The algorithm is simple: it has a for-loop going over all vertices in the order σ; if the
vertex is unvisited, then we run DFS(G, v) on it starting a new tree rooted from v. We
end when there are no more vertices left. Here is the full pseudocode, where we have
enhanced DFS(G, v) to take care of what we need.

1: procedure DFS(G, σ[1 : n]): . σ is an ordering of the vertices
2: global array visited[1 : n] initialized to all 0.
3: global array first[1 : n], last[1 : n], root[1 : n],Fcomp[1 : n] initialized to all 0.
4: global scalar fcomp, time initialized to 0.
5: global Forest F initialized to ∅.

6: for v in σ do:
7: if visited[v] = 0 then:. v hasn’t been visited yet:
8: fcomp← fcomp + 1 . Increase the number of trees in the forest
9: root[fcomp]← v . Set v to be the root of the new tree

10: DFS(G, v)

11: procedure DFS(G, v):
12: visited[v]← 1; Add v to F .
13: Fcomp[v]← fcomp. . Set v’s tree in the forest
14: time← time + 1.
15: Set first[v]← time. . Start exploring.
16: for u neighbor of v do: . In an arbitrary, but fixed order
17: if visited[u] = 0 then:
18: Add edge (v, u) to the forest F .
19: . It will be added to the fcompth component.
20: DFS(G, u)
21: time← time + 1.
22: Set last[v]← time.

Claim 3. The running time of DFS(G, σ) is Θ(m+ n) for any σ.
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Figure 1: The edges that appear in the forest are marked in solid, while the remaining
edges are dotted. The first and last are noted near the vertices. In the third figure on the
right, the interval is the [first[v], last[v]] interval.
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Figure 2: The edges that appear in the forest are marked in solid, while the remaining
edges are dotted. The first and last are noted near the vertices. In the third figure on the
right, the interval is the [first[v], last[v]] interval.
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Different permutations can lead to different outcomes: see Figure 1 and Figure 2.

Edge Classification. Running DFS on a graphGwith any ordering σ leads to four kinds
of edges.

• (Forest Edges.) These are the edges present in F . These are marked black and solid
in the Figures.
• (Back Edges.) These edges go from a descendant to an ancestor. These are marked

blue and dotted.
• (Forward Edges.) These edges go from an ancestor to a descendant. These are

marked red and dotted. For undirected graphs the forward edges are all back edges
(there is no direction).
• (Cross Edges.) All the rest. They can be among pairs in the same component, or not.

These are marked green and dotted.

Properties. Next, we state and prove three properties of the output of the DFS algo-
rithm. Before reading the proofs, it will be useful to check if the statement is indeed
correct by looking at the examples in Figures 1 and 2 (or any other figures you have pri-
vately made). For all the properties below, we assume we have run DFS(G, σ) for some
arbitrary ordering σ.

Lemma 1 (Nested Interval Property). For any two vertices u and v, with first[u] < first[v],
exactly one of the following two properties hold.

• first[u] < first[v] < last[v] < last[u] and v is a descendant of u in F .
• first[u] < last[u] < first[v] < last[v] and neither is a descendant of the other.

This shows that the n intervals of the form [first[v], last[v]] don’t “criss-cross” (although
one may be contained in the other). This property is called the nested property (also called
laminar property).

Proof. Since first[u] < first[v], we call DFS(G, u) before we call DFS(G, v). If v is ever
discovered in the run of DFS(G, u), then (a) it will be a descendant of u in F (by Claim 1),
and (b) we must have last[v] < last[u] since this recursive call must end before u’s recursive
call ends. This is case 1.

The only other case is v has not been discovered in the run of DFS(G, u). In that case,
last[u] < first[v] by definition. Furthermore, v is not a descendant of u, and u can’t be a
descendant of v since v hasn’t been even discovered yet. This is case 2.

The above property is useful, and will be useful in proving some other properties
below. But it also allows us to classify the edges (not in the forest F ) just looking at the
first and the last values.

• (Back Edges.) Edges (u, v) ∈ E \ F with first[v] < first[u] < last[u] < last[v].
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• (Forward Edges.) Edges (u, v) ∈ E \ F with first[u] < first[v] < last[v] < last[u].
• (Cross Edges.) Edges (u, v) ∈ E such that the intervals [first[u], last[u]] and [first[v], last[v]]

are disjoint.

Lemma 2 (Edge Property). Let (u, v) be any edge in G with first[u] < first[v]. Then, we
must have last[v] < last[u].

Proof. Suppose not. By the Nested Interval Property, we must have first[u] < last[u] <
first[v] < last[v]. That happens when DFS(G, u) terminates before visited[v] is set to 1. But
the Line 16 would discover v contradicting the above.

We are now ready for the first application of DFS – we can solve CONNECTED COM-
PONENTS of an Undirected Graph using the following lemma.

Lemma 3. Let G = (V,E) be any undirected graph and consider the forest F returned
by DFS(G, σ) with any permutation σ. The components of F are precisely the connected
components of G.

Application

Proof. Let V1, . . . , Vk be the vertices in the various trees of the forest F . Clearly G[Vi] is
connected since they are connected in the forest. We claim that there is no edge of the
form (u, v) with u ∈ Vi and v ∈ Vj . Suppose there is, and without loss of generality
assume first[u] < first[v] (this is where we are using the undirectedness of G). By the edge
property, we have first[u] < first[v] < last[v] < last[u]. But this means v is a descendant of u
in F contradicting the fact they exist in different connected components of F .

Theorem 2. CONNECTED COMPONENTS of an undirected graph can be found in Θ(n+m)
time by running DFS(G, σ) for any ordering σ.

Moving on to more properties.

Lemma 4 (Path Property). If (u = v1, v2, . . . , vk = v) is a path in G from u to v such that
first[u] < first[vi] for all 2 ≤ i ≤ k, then, last[vi] < last[u] for all 2 ≤ i ≤ k.

In English, if there is a path from a vertex u to a vertex v such that u is the first vertex
to be discovered among them, then all the vertices in the path are descendants of u in the
DFS forest.

Proof. Suppose not. Choose the smallest 2 ≤ i ≤ k for which last[u] < last[vi]. By the
choice of i, we get last[vi−1] < last[u]. Also note (vi−1, vi) is an edge.

Case 1: first[vi−1] < first[vi]. In this case, the Edge Property would imply last[vi] <
last[vi−1], and thus last[vi] < last[u]. Which is what we supposed wasn’t true.

Case 2: first[vi] < first[vi−1]. In that case, we see first[u] < first[vi] < last[u] < last[vi]
which violates the Nested Interval Property.

The above property allow us immediately to solve the CYCLE? problem. The follow-
ing theorem implies the algorithm: run DFS(G, σ) and check if any of the edges is a back
edge (which is one linear time scan over all the edges and checking the first and the last).
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Lemma 5. A graph G is acyclic if and only if there are no back edges.

Application

Proof. One direction is trivial – if G has a back edge, then there is clearly a cycle. If the
back-edge is (u, v), then by definition there is a path from v to u using F -edges, and then
take the (u, v) edge back.

The other direction is more interesting. IfG has a cycleC with k vertices (v1, . . . , vk, v1),
then without loss of generality let v1 be the vertex with the smallest first[vi] in this cycle.
Since there is a path from v1 to vk, using the Path property and the fact that first[v1] is
the smallest, we get first[v1] < first[vk] < last[vk] < last[v1]. But this implies (vk, v1) is a
back-edge.

Theorem 3. CYCLE? can be solved in Θ(n+m) time using DFS.
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