1 Maximum Range Subarray

In this problem, we are given an array $A[1 : n]$ of numbers (think integers or reals), and the goal is to find $i < j$ such that $A[j] - A[i]$ is maximized.

Maximum Range Subarray

Input: Array $A[1 : n]$ of integers.

Output: Indices $1 \leq i \leq j \leq n$ such that $A[j] - A[i]$ is maximized.

Size: n, the length of A.

Once again, there is a trivial $O(n^2)$ time algorithm; go over all pairs (i, j) and choose the one that maximizes $A[j] - A[i]$. Once again, we think of a divide and conquer algorithm. Suppose we solved the problem on $A[1 : n/2]$ and $A[n/2 + 1 : n]$. More precisely, suppose (i_1, j_1) was the MRS for $A[1 : n/2]$ and (i_2, j_2) was the MRS for $A[n/2 + 1 : n]$. Clearly both of these are candidate or feasible solutions for $A[1 : n]$.

Are there other candidate solutions? Yes, and these are of the form (i, j) with $i \leq n/2$ and $n/2 < j$. Is it any easier to find such “cross” (i, j) pairs? In this case the answer is a resounding yes!: since we are trying to maximize $A[j] - A[i]$, we should choose j which maximizes $A[j]$ in $n/2 < j \leq n$ and choose i such that $A[i]$ is minimized in $1 \leq i \leq n/2$. These are $O(n)$-time operations; a win over $O(n^2)$!

```plaintext
1: procedure MRS0(A[1 : n]):
2:   ▷ Returns $1 \leq i \leq j \leq n$ maximizing $A[j] - A[i]$.
3:   if $n = 1$ then:
4:     $(i, j) \leftarrow (1, 1)$. ▷ Singleton Array
5:     return $(i, j)$.
6:   $m \leftarrow \lfloor n/2 \rfloor$
7:   $(i_1, j_1) \leftarrow$ MRS0(A[1 : $m$])
8:   $(i_2, j_2) \leftarrow$ MRS0(A[$m + 1 : n$])
9:   $i_3 \leftarrow \arg\min_{1 \leq t \leq m} A[t]$. ▷ Takes $O(m)$ time
10:  $j_3 \leftarrow \arg\max_{m+1 \leq t \leq n} A[t]$. ▷ Takes $O(m)$ time
11:  return best among $(i_1, j_1), (i_2, j_2), (i_3, j_3)$. ▷ Takes $O(1)$ time
```
As in merge-sort and counting inversions, if \(T(n) \) is the worst case running time of MRS0, then looking at the running time on the worst array of length \(n \), we get

\[
T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + Oa(n)
\]

which evaluates to \(T(n) = \Theta(n \log n) \). This seems good, but in fact we can actually do better using a similar idea as discussed in counting inversions algorithm: Ask More!

If you “opened up” the recursion tree, you would observe that the \(\Theta(n) \) time to compute the max’s and the min’s in Lines 9 and 10 seems repetitive; the same comparisons are made more than once. This gives an idea of what to ask more for; we want our maximum range sub-array algorithm also returns the maximum and minimum of that sub-array. This gives us the next algorithm.

```
1: procedure MRS(A[1 : n]):
2:   ▷ Returns (s, t, i, j) where
3:   • A[j] – A[i] is maximized, and
4:   • s, t are the indices of the min and max of A, respectively.
5: if n = 1 then:
6:   return (1, 1, 1, 1) ▷ Singleton Array
7: m ← ⌊n/2⌋
8: (s1, t1, i1, j1) ← MRS(A[1 : m])
9: (s2, t2, i2, j2) ← MRS(A[m + 1 : n])
10: s ← arg min(A[s1], A[s2]) and t ← arg max(A[t1], A[t2]). ▷ Takes O(1) time
11: (i, j) ← best solution among {(i1, j1), (i2, j2), (s1, t2)}. ▷ Takes O(1) time
12: return (s, t, i, j).
```

The conquer step in Line 8 takes only \(O(1) \) time: the max of the whole array is the max of the maxima in the two halves. Same for the minima. Therefore, the recurrence inequality becomes

\[
T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(1)
\]

solving which gives us the following.

Theorem 1. The MRS algorithm returns the maximum-range sub-array in \(\Theta(n) \) time.

2 Multiplying Polynomials Faster: Karatsuba’s Algorithm

Next we consider the problem of multiplying polynomials. The input is the \((n + 1) \) coefficients of two univariate degree \(n \) polynomials \(p(x) \) and \(q(x) \) given as \(P[0 : n] \) and \(Q[0 : n] \). That is,

\[
p(x) = \sum_{i=0}^{n} P[i] \cdot x^i \quad \text{and} \quad q(x) = \sum_{j=0}^{n} Q[j] \cdot x^j
\]
We desire to output the coefficients the polynomial \(r(x) = p(x) \cdot q(x) \). Note that the degree of \(r(x) \) is \(2n \), and thus the coefficients needs to be stored in an array \(R[0 : 2n] \). We also assume that every \(P[i], Q[j] \) are “small” numbers and so they can be added and multiplied in \(\Theta(1) \) time.\(^1\)

An \(O(n^2) \) time algorithm follows from the formula for \(R[k] \) which is as follows:

\[
\forall 0 \leq k \leq 2n, \quad R[k] = \sum_{0 \leq i, j \leq n; i+j=k} P[i] \cdot Q[j] = \begin{cases}
\sum_{0 \leq i \leq k} P[i] \cdot Q[k-i] & \text{if } k \leq n \\
\sum_{(k-n) \leq i \leq n} P[i] \cdot Q[k-i] & \text{if } n < k \leq 2n
\end{cases}
\]

(1)

Do you see this? By the way, in signal processing this has another name. The array \(R[0 : 2n] \) is called the convolution of the two arrays \(P[0 : n] \) and \(Q[0 : n] \). The above formula gives a \(O(n^2) \)-time algorithm to compute the convolution.

We now show how Divide-and-Conquer gives a faster algorithm.

Remark: The story goes that in the early 1960s the famous Russian mathematician Andrei Kolmogorov held a seminar with the objective to show that any algorithm needs \(\Omega(n^2) \) to multiply two degree \(n \) polynomials. After the first meeting, a young student named Anatoly Karatsuba came up with the algorithm we are about to describe. Kolmogorov canceled the remainder of the seminar.

Let \(m = \lfloor n/2 \rfloor \). Consider the polynomial \(p(x) \) and write it as

\[
p(x) = p_1(x) + x^m p_2(x) \quad \text{where} \quad p_1(x) = \sum_{i=0}^{m-1} P[i]x^i \quad \text{and} \quad p_2(x) = \sum_{i=0}^{n-m} P[m + i]x^i
\]

(2)

Similarly write

\[
q(x) = q_1(x) + x^m q_2(x) \quad \text{where} \quad q_1(x) = \sum_{j=0}^{m-1} Q[j]x^j \quad \text{and} \quad q_2(x) = \sum_{j=0}^{n-m} Q[m + j]x^j
\]

(3)

This gives us the following formula for \(r(x) = p(x) \cdot q(x) \).

\[
r(x) = (p_1(x) + x^m p_2(x)) \cdot (q_1(x) + x^m q_2(x))
\]

\[
= \left(p_1(x) \cdot q_1(x)\right) + x^m \cdot \left(p_1(x) \cdot q_2(x) + p_2(x) \cdot q_1(x)\right) + x^{2m} \cdot \left(p_2(x) \cdot q_2(x)\right)
\]

(4)

Now note that all four polynomials \(p_1(x), p_2(x), q_1(x), q_2(x) \) have degree \(\leq \lfloor n/2 \rfloor \). Therefore, (4) implies that \(r(x) \) can be computed by recursively multiplying the four pairs \((p_1(x), q_1(x)), (p_1(x), q_2(x)), (p_2(x), q_1(x)), \) and \((p_2(x), q_2(x))\). Subsequently, we need to add these polynomials up, but adding polynomials is a simple \(\Theta(n) \) operation.

\(^1\)If they are \(d \)-digits, this is what was studied in the Supplemental Problem: Number Theory set – take a look.
To sum, the above recursive algorithm has the following recurrence inequality: $T(n) \leq 4T(\lceil n/2 \rceil) + \Theta(n)$. We apply the Master Theorem and get $T(n) = O(n^2)$. Sigh! Much ado about nothing?

Next comes the Aha! insightful observation. We observe that we really don’t need the individual products $p_1(x) \cdot q_2(x)$ and $p_2(x) \cdot q_1(x)$; rather we need just their sum.

Observation 1.

\[p_1(x)q_2(x) + p_2(x)q_1(x) = (p_1(x) + p_2(x)) \cdot (q_1(x) + q_2(x)) - (p_1(x) \cdot q_1(x)) - (p_2(x) \cdot q_2(x)) \]

Therefore, the (4) can be computed using 3 multiplication of polynomials of degree $\lceil n/2 \rceil$. These three are $(p_1(x) \cdot q_1(x))$, $(p_2(x) \cdot q_2(x))$, and $(p_1(x) + p_2(x)) \cdot (q_1(x) + q_2(x))$.

After computing this, the polynomial $r(x)$ can be computed using (4) and Observation 1 with $\Theta(1)$ polynomial additions and subtractions. Now, the recurrence inequality governing the above algorithm becomes

\[T(n) \leq 3T(\lceil n/2 \rceil) + \Theta(n) \]

which gives us the following.

Theorem 2. The algorithm KARATMULTPOLY multiplies two n-degree univariate polynomials in $O(n \log_2^3) = O(n^{1.59})$ time.
1: procedure KARATMULTPOLY(P[0 : n], Q[0 : n])
2: if n = 0, 1 then:
3: \hspace{1em} return R[0 : 2n] using the naive multiplication
4: \hspace{1em} m = \lceil n/2 \rceil.
5: \hspace{1em} \triangleright Recall definitions of \(p_1(x), p_2(x), q_1(x), q_2(x) \) from (2), (3)
6: \hspace{1em} for 0 \leq i \leq m - 1 do
7: \hspace{2em} P'[i] = (P[i] + P[m + i])
8: \hspace{2em} Q'[i] = (Q[i] + Q[m + i])
9: \hspace{1em} if n > 2m - 1 then: \triangleright In which case n = 2m since m = n/2 or m = (n + 1)/2.
10: \hspace{2em} P'[m] = P[n]
11: \hspace{2em} Q'[m] = Q[n]
12: \hspace{1em} else:
13: \hspace{2em} P'[m] = Q'[m] = 0
14: \hspace{1em} \triangleright Now P' has the coefficients of \(p_1(x) + p_2(x) \). Q' has the coefficients of \(q_1(x) + q_2(x) \).
15: \hspace{1em} \triangleright Their degrees are \(m - 1 \) or m depending on the parity of n.
16: \hspace{1em} \triangleright The else statement above forces degree m.
17: \hspace{1em} R_1[0 : 2(m - 1)] = KARATMULTPOLY (P[0 : m - 1], Q[0 : m - 1])
18: \hspace{1em} R_2[0 : 2(n - m)] = KARATMULTPOLY (P[m : n], Q[m : n])
19: \hspace{1em} R_3[0 : 2n] = KARATMULTPOLY (P'[0 : m], Q'[0 : m])
20: \hspace{1em} \triangleright R_1 has the coefficients of \(p_1(x) \cdot q_1(x) \)
21: \hspace{1em} \triangleright R_2 has the coefficients of \(p_2(x) \cdot q_2(x) \)
22: \hspace{1em} \triangleright R_3 has the coefficients of \((p_1(x) + p_2(x)) \cdot (q_1(x) + q_2(x)) \)
23: \hspace{1em} Also note that \(R_1, R_2, R_3 \) all have length \(\leq 2m \). We assume they all are \(2m \) length by padding 0’s.
24: \hspace{1em} for 0 \leq i \leq 2m do:
25: \hspace{2em} R_4[i] = (R_3[i] - R_1[i] - R_2[i])
26: \hspace{1em} \triangleright R_4 has the coefficients of \(p_1(x) \cdot q_2(x) + p_2(x) \cdot q_1(x) \) and is degree 2m
27: \hspace{1em} for 0 \leq i \leq 2n do:
28: \hspace{2em} R[i] = R_1[i] + R_4[i - m] + R_2[i - 2m]
29: \hspace{2em} \triangleright We assume an array 'returns 0' if indexed out of its range. For instance, \(R_4[-1] \)
30: \hspace{2em} \hspace{1em} returns 0 and \(R_1[2n] \) returns 0.
31: \hspace{2em} \triangleright When you actually code it, you need a few "if" statements to implement the
32: \hspace{2em} \hspace{1em} above. A drill will ask you to do this. Please do that – it’s super instructive.
33: \hspace{1em} return R[0 : 2n]