1 Maximum Range Subarray

In this problem, we are given an array $A[1 : n]$ of numbers (think integers or reals), and the goal is to find $i < j$ such that $A[j] - A[i]$ is maximized.

Maximum Range Subarray

Input: Array $A[1 : n]$ of integers.

Output: Indices $1 \leq i \leq j \leq n$ such that $A[j] - A[i]$ is maximized.

Size: n, the length of A.

For example, if the array is

$A = [13, 4, -4, 5, 7, 10, -5, 3]$

then the solution is the indices 3 and 6 for $A[6] - A[3] = 10 - (-4) = 14$ is the largest. Note that the knee-jerk algorithm of choosing j to be the location of the maximum element and i to be the location of the minimum element doesn’t work. In the example above, the maximum element is in index 1 and the minimum is in index 7.

Once again, there is a trivial $O(n^2)$ time algorithm. One goes over all pairs (i, j) and choose the one that maximizes $A[j] - A[i]$. We will now get a better algorithm using divide-and-conquer. In order to do so, suppose we solved the problem on $A[1 : n/2]$ and $A[n/2 + 1 : n]$. More precisely, suppose (i_1, j_1) was the solution for $A[1 : n/2]$ and (i_2, j_2) was the solution for $A[n/2 + 1 : n]$. Clearly both of these are candidate or feasible solutions for $A[1 : n]$.

Are there other candidate solutions? Yes, and these are of the form (i, j) with $i \leq n/2$ and $n/2 < j$. Indeed, in the example above, the solution for $A[1 : 4]$ is $(3, 4)$ while the solution for $A[5 : 8]$ is $(5, 6)$. But the solution for the whole array is the “cross pair” $(3, 6)$.

Is it any easier to find the best “cross pair” (i, j)? In this case the answer is a resounding yes! since we are trying to maximize $A[j] - A[i]$ where $1 \leq i \leq [n/2]$ and $[n/2] \leq j \leq n$, we should choose j which maximizes $A[j]$ in $n/2 < j \leq n$ and choose i such that $A[i]$ is minimized in $1 \leq i \leq n/2$. These, that is finding the maximum and minimum, are $O(n)$-time operations; a win over $O(n^2)$. And thus, divide and conquer will give a much faster algorithm than $O(n^2)$. Below is the algorithm.
As in merge-sort and counting inversions, we can write the recurrence inequality for the running time $T(n)$ of $\text{MRS}0$. Indeed, Line 3 to Line 6 all cost $O(1)$ time. Line 7 and Line 8 cost at most $T([n/2])$ and $T([n/2])$ respectively. Line 9 and Line 10 together cost $O(m) + O(n - m) = O(n)$ time in all. And thus, we get

$$T(n) \leq T([n/2]) + T([n/2]) + O(n)$$

which, as is familiar to us, evaluates to $T(n) = O(n \log n)$. This seems good, but in fact we can actually do better using a similar idea as discussed in counting inversions algorithm: Ask More!

If you “opened up” the recursion tree, you would observe that the $O(n)$ time to compute the max’s and the min’s in Line 9 and Line 10 seems repetitive; the same comparisons are made more than once. This gives an idea of what to ask more for; we want our maximum range sub-array algorithm also returns the maximum and minimum of that sub-array.

The conquer step in Line 8 takes only $O(1)$ time: the max of the whole array is the max of the maxima in the two halves. Same for the minima. Therefore, the recurrence inequality becomes

$$T(n) \leq T([n/2]) + T([n/2]) + O(1)$$
which, using the Master Theorem, gives us the following.

Theorem 1. The MRS algorithm returns the maximum-range sub-array in $O(n)$ time.

2 Multiplying Polynomials Faster: Karatsuba’s Algorithm

In this section we will look at a really fascinating application of the divide-and-conquer paradigm. The problem is that of multiplying two univariate polynomials.

Recall, given a variable x, a degree n polynomial $p(x)$ is of the form

$$p(x) = \sum_{i=0}^{n} p_i \cdot x^i$$

where p_i is the coefficient of the degree i monomial x^i. A degree n polynomial has $(n + 1)$ monomials (including the constant monomial $x^0 = 1$) and coefficients.

Given two degree n polynomials, $p(x)$ and $q(x)$, the **product** of the two polynomials $p(x) \cdot q(x)$ is another polynomial $r(x)$. Let us recall this with an example. Consider

$$p(x) = 1 + x + x^2 \quad \text{and} \quad q(x) = 2 + 3x + x^2$$

Then, the product polynomial is

$$r(x) = (1 + x + x^2)(2 + 3x + x^2) = 2 + 5x + 6x^2 + 4x^3 + x^4$$

Indeed, in general, if $p(x)$ and $q(x)$ are degree n polynomials, then $r(x)$ is a degree $2n$ polynomial, whose coefficient r_k for the monomial x^k, $0 \leq k \leq 2n$ is given by the formula

$$r_k = \begin{cases}
\sum_{0 \leq i \leq k} p_i \cdot q_{k-i} & \text{if } k \leq n \\
\sum_{(k-n) \leq i \leq n} p_i \cdot q_{k-i} & \text{if } n < k \leq 2n
\end{cases} \quad (1)$$

For instance, $r_2 = p_0q_2 + p_1q_1 + p_2q_0$. Please make sure you understand the above formula before moving on. Thanks!

MULTIPLYING POLYNOMIALS

Input: Coefficients of two degree n polynomials: arrays $P[0 : n]$ and $Q[0 : n]$

Output: Coefficients of the product polynomial: array $R[0 : 2n]$.

Size: n, the length of P and Q.

We also assume that every $P[i], Q[j]$ are “small” numbers and so they can be added and multiplied in $O(1)$ time.

An $O(n^2)$ time algorithm follows from the formula (1). Indeed, for every k, where $0 \leq k \leq 2n$, we need compute only a summation. The kth summation adds at most $(n + 1)$ summands, and each summand is product of two numbers. The summands can be found using a for-loop taking $O(n)$ time. In sum, every $R[k]$, individually, can be computed in $O(n)$ time. Since there are $2n + 1$ different k’s, one can figure the whole $R[0 : 2n]$ out in $O(n^2)$ time.

Remark: At this point, it is natural to probably say, “Maybe one cannot do any better.” And if so, you are in venerable company. The story goes that in the early 1960s the famous Russian mathematician Andrei Kolmogorov held a seminar with the objective to show that any algorithm must need $\Omega(n^2)$ time to multiply two degree n polynomials. After the first meeting, a young student named Anatoly Karatsuba came up with the algorithm we are about to describe. Kolmogorov canceled the remainder of the seminar.

And the algorithm is a simple, but magical, divide-and-conquer algorithm. Let’s begin.

Remark: It may be useful to keep a “running example” to illustrate the algorithm. So, suppose our example (for $n = 3$) is

$$p(x) = 1 + 3x + x^2 + 2x^3 \quad \text{and} \quad q(x) = 2 + x + 2x^2 + x^3$$

The product polynomial is

$$r(x) = 2 + 7x + 7x^2 + 12x^3 + 7x^4 + 5x^5 + 2x^6$$

The boldface is just to make you aware that it is a specific example.

We will start with an algorithm which doesn’t quite do the job, and then fix it. Let $m = \lfloor n/2 \rfloor$. Consider the polynomial $p(x)$ and write it as

$$p(x) = p_1(x) + x^m p_2(x) \quad \text{where} \quad p_1(x) = \sum_{i=0}^{m-1} P[i] x^i \quad \text{and} \quad p_2(x) = \sum_{i=0}^{n-m} P[m + i] x^i \quad (2)$$

Similarly write

$$q(x) = q_1(x) + x^m q_2(x) \quad \text{where} \quad q_1(x) = \sum_{j=0}^{m-1} Q[j] x^j \quad \text{and} \quad q_2(x) = \sum_{j=0}^{n-m} Q[m + j] x^j \quad (3)$$

Note that all four polynomials $p_1(x), p_2(x), q_1(x), q_2(x)$ have degree $\leq \lfloor n/2 \rfloor$. For our example, we have $m = \lfloor 3/2 \rfloor = 2$, and thus

$$p_1(x) = 1 + 3x, \quad p_2(x) = 1 + 2x, \quad q_1(x) = 2 + x, \quad q_2(x) = 2 + x$$

Now, we see that the product $r(x)$ of $p(x)$ and $q(x)$ can be written thus:

$$r(x) = (p_1(x) + x^m p_2(x)) \cdot (q_1(x) + x^m q_2(x))$$

$$= (p_1(x) \cdot q_1(x)) + x^m \cdot (p_1(x) \cdot q_2(x) + p_2(x) \cdot q_1(x)) + x^{2m} \cdot (p_2(x) \cdot q_2(x)) \quad (4)$$

Therefore, (4) implies that $r(x)$ can be computed by recursively multiplying the four pairs of polynomials $(p_1(x), q_1(x)), (p_1(x), q_2(x)), (p_2(x), q_1(x)), \text{and} (p_2(x), q_2(x))$. Each pair is a product of polynomials of degree at most $\lfloor n/2 \rfloor$. After computing these four products, we need to add these four product polynomials up. This is the “conquer/combine” step.
How much time does it take to add up two degree \(k \) polynomials? Let us figure this out. Given two degree \(d \) polynomials, let us now call them \(a(x) \) and \(b(x) \), the addition is another degree \(d \) polynomial whose \(k \)th coefficient is simply the sum of the corresponding \(k \)th coefficients of \(a(x) \) and \(b(x) \). That is, one can obtain the sum of two polynomials in \(O(n) \) time.

To summarize, the suggested recursive algorithm is to compute four products: (1) \(r_1(x) = p_1(x)q_1(x) \), \(r_2(x) = p_1(x)q_2(x) \), \(r_3(x) = p_2(x)q_1(x) \), and \(r_4(x) = p_2(x)q_2(x) \) recursively. And then, outputting \(r(x) = r_1(x) + x^m \cdot (r_2(x) + r_3(x)) + x^{2m}r_4(x) \). Note that \(x^{2m}r_4(x) \) is simply another polynomial whose coefficients are "shifted" by \(2m \). The following pseudocode gives the outline (but I am not providing details).

```plaintext
1: procedure MULTPOLYDC\( (p(x), q(x)) \):▷ We want to return \( p(x) \cdot r(x) \).
2: \( m \leftarrow \lceil n/2 \rceil \)
3: Form the polynomials \( p_1(x), p_2(x), q_1(x), q_2(x) \) respectively. ▷ This takes \( O(n) \) time.
4: \( r_1(x) \leftarrow \text{MULTPOLYDC}(p_1(x), q_1(x)) \) ▷ This takes \( T(\lceil n/2 \rceil) \) time.
5: \( r_2(x) \leftarrow \text{MULTPOLYDC}(p_1(x), q_2(x)) \) ▷ This takes \( T(\lceil n/2 \rceil) \) time.
6: \( r_3(x) \leftarrow \text{MULTPOLYDC}(p_2(x), q_1(x)) \) ▷ This takes \( T(\lceil n/2 \rceil) \) time.
7: \( r_4(x) \leftarrow \text{MULTPOLYDC}(p_2(x), q_2(x)) \) ▷ This takes \( T(\lceil n/2 \rceil) \) time.
8: Form \( r(x) \) by combining \( r_1(x), r_2(x), r_3(x), r_4(x) \). ▷ This takes \( O(n) \) time since adding polynomials takes \( O(n) \) time.
```

Just to illustrate, for our example polynomials, we get that
\[
\begin{align*}
 r_1(x) &= 2 + 7x + 3x^2, \quad r_2(x) = 2 + 7x + 3x^2, \quad r_3(x) = 2 + 5x + 2x^2, \quad r_4(x) = 2 + 5x + 2x^2, \\
\end{align*}
\]

And therefore, the algorithm would return the polynomial
\[
(2 + 7x + 3x^2) + x^2((2 + 7x + 3x^2) + (2 + 5x + 2x^2)) + x^4(2 + 5x + 2x^2)
\]

which equals
\[
2 + 7x + 3x^2 + (4x^2 + 12x^3 + 5x^4) + (2x^4 + 5x^5 + 2x^6) = 2 + 7x + 7x^2 + 12x^3 + 7x^4 + 5x^5 + 2x^6
\]

(5)

which is what it should be (that is, \(r(x) \)).

What is the running time of the above algorithm? Well, it breaks a problem into \textit{four} subproblems each of size \(\lceil n/2 \rceil \) and then combines them in time \(O(n) \). That is, the recurrence inequality governing the running time is
\[
T(n) \leq 4T(\lceil n/2 \rceil) + O(n)
\]

We apply the Master Theorem, and then we get \(T(n) = O(n^2) \). Sigh! Much ado about nothing?

Next comes the Aha! insightful observation. We observe that we really don’t need the individual products \(p_1(x) \cdot q_2(x) \) and \(p_2(x) \cdot q_1(x) \) at all. What we need is just their sum. Can we compute the sum \textit{without} computing the individual summands. Turns out, in a way, yes. It follows from the following observation.

Observation 1.

\[
p_1(x)q_2(x) + p_2(x)q_1(x) = (p_1(x) + p_2(x)) \cdot (q_1(x) + q_2(x)) - (p_1(x) \cdot q_1(x)) - (p_2(x) \cdot q_2(x))
\]

Proof. Just open up the brackets and see.
Again going back to our example, we see that

\[(p_1(x) + p_2(x)) \cdot (q_1(x) + q_2(x)) = (2 + 5x) \cdot (4 + 2x) = (8 + 24x + 10x^2) \]

And thus,

\[r_2(x) + r_3(x) = (8 + 24x + 10x^2) - (2 + 7x + 3x^2) - (2 + 5x + 2x^2) = 4 + 12x + 5x^2 \]

which is indeed the case. And as in (5), we proceed to get the right product of \(p(x) \) and \(q(x) \).

Why is this observation useful? Well, note that \(p_1(x)q_1(x) \) and \(p_2(x)q_2(x) \) have been computed already (these are \(r_1(x) \) and \(r_4(x) \)).

Therefore, to compute the sum in the LHS, that is \(r_2(x) + r_3(x) \), we don’t have to compute them individually, but rather compute the product \((p_1(x) + q_1(x)) \cdot (p_2(x) + q_2(x)) \) and subtract the \(r_1(x) \) and \(r_4(x) \) from this. Thus, we can get away with three multiplications of smaller polynomials.

One can now see that the recurrence inequality governing the above algorithm becomes

\[T(n) \leq 3T(\lceil n/2 \rceil) + \Theta(n) \]

which gives us the following.

Theorem 2. The algorithm \textsc{KaratMultPoly} multiplies two \(n \)-degree univariate polynomials in \(O(n \log^2 3) = O(n^{1.59}) \) time.

Below, we give another pseudocode which considers the input as arrays of the coefficients. This may help you in actually coding it up. Indeed, you this will be asked in the coding assignment.
1: procedure KARATMULTPOLY(P[0 : n], Q[0 : n]): ▷ We want to return R[0 : 2n].
2: if n = 0, 1 then:
3: return R[0 : 2n] using the naive multiplication
4: m = \lfloor n/2 \rfloor.
5: ▷ Recall definitions of p₁(x), p₂(x), q₁(x), q₂(x) from (2),(3)
6: for 0 \leq i \leq m - 1 do
7: P'[i] = (P[i] + P[m + i])
8: Q'[i] = (Q[i] + Q[m + i])
9: if n > 2m - 1 then: ▷ In which case n = 2m since m = n/2 or m = (n + 1)/2.
10: P'[m] = P[n]
11: Q'[m] = Q[n]
12: else:
13: P'[m] = Q'[m] = 0
14: ▷ Now P' has the coefficients of p₁(x) + p₂(x). Q' has the coefficients of q₁(x) + q₂(x).
15: ▷ Their degrees are m - 1 or m depending on the parity of n.
16: ▷ The else statement above forces degree m.
17: R₁[0 : 2(m - 1)] = KARATMULTPOLY(P[0 : m - 1], Q[0 : m - 1])
18: R₂[0 : 2(n - m)] = KARATMULTPOLY(P[m : n], Q[m : n])
19: R₃[0 : 2m] = KARATMULTPOLY(P'[0 : m], Q'[0 : m])
20: ▷ R₁ has the coefficients of p₁(x) \cdot q₁(x)
21: ▷ R₂ has the coefficients of p₂(x) \cdot q₂(x)
22: ▷ R₃ has the coefficients of (p₁(x) + p₂(x)) \cdot (q₁(x) + q₂(x))
23: ▷ Also note that R₁, R₂, R₃ all have length \leq 2m. We assume they all are 2m length by padding 0’s.
24: for 0 \leq i \leq 2m do:
25: R₄[i] = (R₃[i] - R₁[i] - R₂[i])
26: ▷ R₄ has the coefficients of p₁(x) \cdot q₂(x) + p₂(x) \cdot q₁(x) and is degree 2m
27: for 0 \leq i \leq 2n do:
28: R[i] = R₄[i] + R₄[i - m] + R₄[i - 2m]
29: ▷ We assume an array ‘returns 0’ if indexed out of its range. For instance, R₄[-1] returns 0 and R₄[2n] returns 0.
30: ▷ When you actually code it, you need a few “if” statements to implement the above.
31: Please do that – it’s super instructive.
32: return R[0 : 2n]