This lecture marks the start of the module on Dynamic Programming. Dynamic Programming is an essential tool in the algorithm designer’s repertoire. It solves problems that a first glance seems to suggest are terribly difficult to solve. For example, take Problem 2 in PSet 0 — most of you realize brute-force will take way too long, and have been befuddled as how to proceed. But Dynamic Programming will solve it pretty efficiently.

Dynamic Programming, unfortunately, is also something that some students have trouble understanding and using. I know, because I did. But it is a very simple idea, and once one gets used to it1, kind of hard to muck up. We will begin DPs in earnest from next class, but today we explore the main idea behind dynamic programming: recursing with memory aka bottom-up recursion aka smart recursion.

\section{Fibonacci Numbers: Recursion with Memory}

Let us recall Fibonacci numbers.

\begin{equation}
F_1 = 1, \quad F_2 = 1, \quad \forall n > 2, \quad F_n = F_{n-1} + F_{n-2}
\end{equation}

Here is a simple computational problem.

\begin{itemize}
 \item \textbf{FIBONACCI}
 \item \textbf{Input:} A number n.
 \item \textbf{Output:} The nth Fibonacci number, F_n.
 \item \textbf{Size:} n.
\end{itemize}

\textbf{Remark:} “Now hold on,” I hear you cry, “we are back to handling numbers as input. Then if the input is n, shouldn’t we consider the number of bits in n, that is $\log n$, as the size and not n?” Perfectly valid question. The answer lies in the output. The exercise below shows that the number of bits required to write F_n is $\Theta(n)$. This is the reason we are going to take n as the size.

But I am going to cheat a bit below – when I add two numbers, I am still going to wrongly assume they are $O(1)$ time operations. In fact, they may take $O(n)$ time since the numbers can be $O(n)$-bits long. However, addition is a much, much faster operation than say running a for-loop, and we are going to just assume addition is an elementary operation.

\textbf{Exercise:} Prove that for any n, we have $2^{n/2} \leq F_n \leq 2^n$. Use induction.

The definition (1) of Fibonacci numbers implies the following recursive algorithm.

120 problems should do it
The above is a disastrous thing to do. However, for all the problems we will encounter for Dynamic Programming, if you have obtained the disastrous algorithm as above, we are actually probably close to victory. That is, if we have been able to express your algorithm as a recursive algorithm like the one above, then the fix for the above algorithm will probably work for our recursive algorithm as well. More precisely, we are going to see below how to smartly implement the recursion in (1). And this trick, almost always, will also mechanically work for the recursion you have obtained.

What is the running time of \(\text{NAIVEFIB} \)? As warned before, I am assuming (wrongly) that the addition in Line 5 takes \(O(1) \) time. Alternately, you can just think of \(T(n) \) as the number of additions required to calculate the Fibonacci numbers. We see that the recurrence which governs the running time is

\[
T(n) \leq T(n-1) + T(n-2) + O(1)
\]

Even if we ignore the \(O(1) \) in the RHS above, we see that the recurrence governing \(T(n) \) is eerily similar to (1). And that is not good news – it says \(T(n) \) can be as large as \(F_n \) which we know from the exercise above is \(\geq 2^{n/2} \). Yikes!

First we observe why the above algorithm is so time consuming. To see this, let us draw out the “recursion tree” when \(\text{NAIVEFIB} \) is indeed called on a certain value. Figure 1 shows the case when called with \(n = 6 \). We see that many problems are solved again and again, recursively. There are two ways to fix this.

Figure 1: Call of \text{NAIVEFIB} on \(n = 6 \). The encircled parts of the tree show repeated computation.

Both involve the same principle. The idea is

\[
\text{If we remember the solutions to smaller subproblems, then there’s no need to take the trouble to re-solve them.}
\]

Hey, that rhymed!
Implementation via Memoization.

1: Implement a “look-up table” T.
3: procedure MEMOFIB(n):
 4: if $T[n]$ is defined then:
 5: return $T[n]$
 6: else:
 7: $t \leftarrow$ MEMOFIB($n - 1$) + MEMOFIB($n - 2$)
 8: Set $T[n] \leftarrow t$
 9: return t

The memoization approach gets to the heart of the problem described above. It stores all previously computed Fibonacci numbers in a look-up table T. Different programming languages have different implementations of the look up table; we assume (perhaps wrongly) look ups take $O(1)$ time. Therefore, the running time of the above pseudocode is $O(n)$.

Bottom-Up Implementation: The Table method. This is the method which makes computation more explicit and will be what we will use throughout the course. The method described below seems a little wasteful implementation of the memoization idea; it has the benefit of (hopefully) being clearer.

Remark: Few comments. The table method solves a lot more; for instance, the table method will return all the F_j’s for $1 \leq j \leq n$. The memoization method only solves what is needed. On the other hand, memoization includes recursion and implementing a look-up table. Although we have considered these to be $O(1)$-operations, in practice, depending on the system in which it is implemented, the running times can differ. All in all, the table method is more clear cut and easier to analyze. However, when faced in the “real world” do not forget memoization. In any case, if you do use memoization or bottom-up, the important thing to remember is to be correct.

We first observe that the solution to the problem $FIB(n)$ depends on the solutions to the problems $FIB(n - 1)$ and $FIB(n - 2)$. Thus, if we stored these solutions in an array (sounds very much like a look-up table) $F[1:n]$, then the following picture shows the dependency of the various entries.

![Figure 2: Dependency of the Fibonacci Array](image)

Note two things: (a) The “graph” has no cycles. Otherwise, there will be a cyclic dependency and it doesn’t make sense. (b) There are “sinks” in this graph: points from which no arrows come out. These are the base cases; $F[1]$ and $F[2]$ don’t need any computation; they are both 1. Given this graph above, the algorithm to obtain the nth position $F[n]$ becomes clear: traverse it from the “sink” to $F[n]$. Here’s how.
1: procedure FIB(n):
2: Allocate space \(F[1:n] \)
3: Set \(F[1] \leftarrow 1; F[2] \leftarrow 1. \)
4: for \(i = 3 \) to \(n \) do:
5: \(F[i] \leftarrow F[i - 1] + F[i - 2] \)
6: \(\triangleright \text{Note: the computation of } F[i] \text{ requires precisely the } F[j] \text{’s the } F[i] \text{ points to} \)
7: return \(F[n] \)
8: \(\triangleright \text{Note: we have actually found all the } F[j] \text{ for } j \leq n. \text{ The Table method often does more work than needed.} \)

Exercise: Implement both the above methods, via memoization and the bottom up table method, in Python 3, and use the \texttt{time()} routine to see which is faster. Discuss your findings on Piazza.

2 Binomial Coefficients

Here is another example: \textit{binomial coefficients}. Given non-negative integers \(n, k \leq n \), one uses \(\binom{n}{k} \) to denote the number of ways of choosing \(k \) distinct items from \(n \) distinct items. The following is a well known recurrence \textit{equality} (just like Fibonacci numbers) called Pascal’s identity.

\[
\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}
\] \hspace{1cm} (2)

Of course, it needs base cases. Here there are two. The first is that \(\binom{m}{0} = 1 \) for all integers \(m \geq 0 \); there is exactly one way to choose 0 things out of \(m \) things: do nothing. The second is that \(\binom{m}{j} = 0 \) if \(j > m \); there is no way you can pick more things out of less things. Again, all this you have seen in CS30. Now to the problem at hand.

\textbf{Binomial}

\begin{itemize}
 \item \textbf{Input}: Numbers \(n, k \leq n \).
 \item \textbf{Output}: The Binomial Coefficient \(\binom{n}{k} \)
 \item \textbf{Size}: \(n \).
\end{itemize}

\textbf{Remark}: If you remember CS 30, then you know there is an explicit formula for the binomial coefficients. But that includes multiplication and division; the above recursive algorithm will need only addition. More importantly, see UGP3 Problem 1 for a very related application without a closed form formula.

Once again, there is a naive recursive algorithm which the above recurrence (2) readily defines.
Again, if you write the running time of it using a recurrence inequality, you will see that the time taken is at
least the value of the binomial coefficient. How large can they be? Do you remember? Can be pretty large.
Rule of thumb $\binom{n}{n/2} \approx \frac{2^n}{\sqrt{n}}$. So no way this will compute for $n = 100$.

But, we can fix this just like we fixed NAIVEFIB. There is one difference — the function above takes
two parameters (n and k). And thus, our table needs to be two dimensional. Do you want to attempt this
before reading on? It would be very instructive.

We observe that to compute $\binom{n}{i}$ we need only $\binom{n-1}{i}$ and $\binom{n-1}{i-1}$. Thus if we have “smaller” binomial
coefficients, then we can use them to get larger binomial coefficients. This suggests we store for all $1 \leq m \leq n$ and all $1 \leq j \leq k$, the binomial coefficients $\binom{m}{j}$; this we store in a two-dimensional table $B[m, j]$. Once
we make this decision, the following code tells us how to “fill up the table”.

```
1: procedure Binom(n, k):
2: Allocate space $B[0 : n, 0 : k]$. 
3: Set $B[m, 0] = 1$ for all $m$. \(\triangleright\) Base case of $\binom{n}{0} = 1$ for all $m$.
4: Set $B[m, j] = 0$ for all $j > m$. \(\triangleright\) Base Case : there is zero ways of choosing a larger number of
5: \hspace{1em} items from a smaller number of items.
6: for $m = 1$ to $n$ do:
7: \hspace{1em} for $j = 1$ to $k$ do:
8: \hspace{2em} $B[m, j] = B[m - 1, j] + B[m - 1, j - 1]$.
9: \hspace{2em} \(\triangleright\) Note: the computation of $B[m, j]$ requires $B[m - 1, j]$ and $B[m - 1, j - 1]$ and they have
10: \hspace{2em} been computed before.
11: return $B[n, k]$
12: \(\triangleright\) Note: we have actually found all the $B[m, j]$ for $m \leq n, j \leq k$. The Table method often
does more work than needed.
```

The running time and space of the above is $O(nk)$ time. Way better than the recursive algorithm and we
can easily go for $n = 100$ and $k = 50$ (why don’t you code it and see?)