
What I know after taking CS 30

The document summarizes a subset of things which you should be knowing after taking CS 30. It is more
a collection of facts, tricks and tidbits (rather than concepts).

• The Arithmetic Sum Formula.

For any integer n ≥ 1,

n∑
i=1

i =
n(n+ 1)

2

• The Geometric Sum Formula.

For any integers a > 1 and n ≥ 0,

n∑
i=0

ai =
a(n+1) − 1

a− 1

For any integers a < 1 and n ≥ 0,

n∑
i=0

ai =
1− a(n+1)

1− a

And in particular,

For any integer a < 1,

∞∑
i=0

ai =
1

1− a

• Proofs by Contradiction.

The “Suppose not” idea. Extremely useful. Can prove propositions such as

–
√

2 is irrational.
– There are infinitely many primes.

• Sets: Basic Definitions.

– set, element, ∈, subset ⊂, superset ⊃, empty set ∅, cardinality | · |.
– union A ∪B, intersection A ∩B, set difference A \B, Cartesian product A×B.

• Inclusion-Exclusion (baby version). For any two finite sets A and B,

|A ∪B| = |A|+ |B| − |A ∩B|

• Functions: Basic Definitions.

– valid function, domain, co-domain, range.
– surjective (range = co-domain), injective (no collisions), bijective (both of the above).

• Countable Sets.

A set S is countable if and only if there exists an injective function f : S → N of natural numbers. Think
of this as a map/hash from the elements of the set to positive integers which don’t collide. Using this
map, we can “print out” all the elements of the set in some order (and not necessarily ascending or
descending order).

Couple of tricks to prove a set is countable: (a) make space by multiplying by 2 (or some other num-
ber) (b) make space by making it exponent of primes. Using these we get:

– Finite sets are countable.

1

– Subset of a countable set is countable.
– Set of integers is countable.
– More generally, A,B countable means A ∪B is countable.
– Therefore, for any finite collection A1, A2, . . . , An, I know A1 ∪A2 ∪ · · · ∪An is countable.
– Set of rationals is countable.
– Given countable sets A1, A2, A3, · · · , the infinite union ∪n∈NAn is countable.
– The set of all strings over an alphabet is countable.

• Uncountable Sets and Diagonalization.

A classic and deep “suppose-not” trick. If the set of reals were countable, then their “binary notation”
can be written one on top of the other to create an infinite 2D table. Trick: look at the flip of the
diagonal! Some uncountable sets:

– The Set of Reals

– The Set of all Boolean functions f : N→ {0, 1}

• Uncomputable Functions.

Since the set of all Boolean functions is uncountable, and the set of all Python programs is countable,
there must exist a Boolean function f such that no Python program’s I/O behavior mimics that of f .
Such a function is uncomputable.

• The Halting Problem.

Given a piece of code A and data I , both as strings, there cannot exist any procedure which takes (A, I)
as input and decides in finite time whether A(I) terminates in finite time or goes into infinite loop.
This is also an example of the same diagonalization trick.

• Modular Arithmetic: Definition.

a mod n is the unique integer r ∈ {0, 1, 2, . . . , n− 1} such that a divided by n leaves remainder r.

a ≡ b mod n or, more concisely, a ≡n b if and only if a mod n = b mod n.

• Operations in Modular Arithmetic.

– (a+ b) mod n = ((a mod n) + (b mod n)) mod n
– (a · b) mod n = ((a mod n) · (b mod n)) mod n

– ab mod n = (a mod n)
b

mod n

• Algebra in Modular Arithmetic. Below, a, b, c are all integers, and n is a positive integer. The above
operations imply that the following “natural” algebraic operations are kosher.

– a ≡n b ⇒ (a+ c) ≡n (b+ c).
– a ≡n b ⇒ a · c ≡n b · c.
– a ≡n b ⇒ ac ≡n bc if c > 0.

But beware that the last two implications go only in one direction.That is,

a · c ≡n b · c doesn’t necessarily imply a ≡n b

So you can’t “divide off” c from both sides. To see this, note 2 · 4 ≡6 5 · 4 ≡6 2 but 2 6≡6 5.

Similarly,
ac ≡n bc doesn’t necessarily imply a ≡n b

So you can’t “take 1/cth power. To see this, note 52 ≡8 32 ≡8 1, but 5 6≡8 3.

2

• The Ring of Integers modulo n.

The set of possible remainders {0, 1, 2, . . . , n − 1} is denoted as Zn and is called the ring of integers
modulo n. “Addition” of two numbers (modulo n) in the ring gives another number in the ring, and
so does “multiplication” (modulo n).

• Modular Exponentiation. A pretty fast way to compute ab mod n.

• Greatest Common Divisor (GCD).

– gcd(a, n) is the largest number dividing both a and n.
– Euclid’s recursive algorithm to find GCD of any two numbers.
– Bezout’s Theorem: gcd(a, n) = g implies the existence of two integers x, y such that xa+ yn = g.
– The above (x, y) can be found by Extended GCD algorithm.
– In fact, g is the smallest positive integer which can be written as xa+ yn.

• Co-prime or Relatively prime numbers.

Two numbers a, n are co-prime or relatively prime if and only if gcd(a, n) = 1. Co-prime numbers
have lots of nice properties. In particular, the following facts are useful (you should be able to prove
all of them using Bezout’s Theorem mentioned above).

– If gcd(a, n) = 1, and ab ≡n 0, then b ≡n 0. As a consequence, we get
– If gcd(a, n) = 1, and a · b ≡n a · c, then b ≡n c.
– If a prime p divides a and p divides b, then p divides ab.
– If gcd(a, n) = 1 and gcd(b, n) = 1, then gcd(ab, n) = 1.

• The Multiplicative Inverse.

Co-prime numbers have inverses; a supremely helpful fact. For any two pair of coprime numbers a
and n, the multiplicative inverse of a in the ring Zn, also called the multiplicative inverse of a modulo
n, is the unique element b in Zn such that ab ≡n 1. We can use the Extended Euclid’s GCD algorithm
to compute the multiplicative inverses.

• Fermat’s Little Theorem.

For any prime p and number a such that gcd(a, p) = 1, we have

ap−1 = 1 mod p, or, more concisely, ap−1 ≡p 1

• Public Key Cryptography.

A conceptual breakthrough due to Diffie and Hellman from 1976 which allowed secrets to be shared
without the need for keys to be shared. Diffie-Hellman win Turing Award in 2015.

– Alice wants to send a message m to Bob.
– Bob generates two keys: a public key pk which is told to all; a secret key sk which is only known to him.
– Bob also publishes two algorithms Enc and Dec.
– Alice uses Enc(m, pk) to get the encrypted cipher c.
– Bob uses Dec(c, sk, pk) to decrypt the cipher.
– Eve can’t figure m out given Enc(m, pk) and pk.

• RSA protocol.

A fantastic algorithm implementing public key cryptography. Invented by Rivest, Shamir, Adleman
in 1978. Rivest-Shamir-Adleman awarded Turing award in 2002.

– Bob picks two large primes p, q. Let N := pq and φ := (p− 1)(q − 1).
– Bob picks another number e such that gcd(e, φ) = 1.

3

– Bob figures out d ≡ e−1 mod φ, that is, d is the multiplicative inverse of e in Zφ.
– Bob’s public key is (e,N). Bob’s secret key is d.
– Encryption: Alice uses (e,N) to encrypt m 7→ me mod N .
– Decryption: Bob uses (d,N) to decrypt cipher c 7→ cd mod N .

• Boolean Variables and Formulas, Propositional Logic.

– Boolean variables take value true or false.
– Using various operations (∧,∨,⇒) we can get Boolean formulas from Boolean variables.
– Every formula is defined by its truth table which specifies its value depending on all possible values of

the variables.
– A Boolean formula on n Boolean variables has 2n rows in its truth table.
– Two Boolean formulas are equivalent if and only if their truth tables are same.

• Important Equivalences in Propositional Logic.

– (Negation of Negation.) ¬(¬p) ≡ p.
– (Operation with true, false.) p ∧ true ≡ p; p ∨ true ≡ true; p ∧ false ≡ false; p ∨ false ≡ p.
– (Idempotence.) p ∧ p ≡ p; p ∨ p ≡ p.
– (Operation with Negation.) p ∧ ¬p ≡ false; p ∨ ¬p ≡ true.
– (Irrelevance.) p ∨ (p ∧ q) ≡ p; p ∧ (p ∨ q) ≡ p.
– (Commutativity.)
∗ p ∨ q ≡ q ∨ p.
∗ p ∧ q ≡ q ∨ p.

– (Associativity.)
∗ p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r.
∗ p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r.

– (Distributivity.)
∗ p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).
∗ p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r).

– (Implications as an OR.) p⇒ q ≡ ¬p ∨ q.
– (De Morgan’s Law.) ¬(p ∨ q) ≡ ¬p ∧ ¬q; ¬(p ∧ q) ≡ ¬p ∨ ¬q.

• Predicate or First Order Logic.

– A predicate P is a function from a domain (called the domain of discourse) to {true, false}.
– Given predicates, we can use quantifiers (∀,∃) to define formulas in predicate logic.
– It’s handy to think of ∀x ∈ S : P (x) as a collection of ∧’s.
– It’s handy to think of ∃x ∈ S : P (x) as a collection of ∨’s.
– Using this, we get ¬ (∀x ∈ S : P (x)) = ∃x : ¬P (x), and ¬ (∃x ∈ S : P (x)) = ∀x : ¬P (x)
– Quantifiers can be nested.
– Order is super important. ∀x, ∃y : P (x, y) and ∃x, ∀y : P (x, y) are completely different.
– Negation of a nested quantifier statement is another nested quantifier statement.

• Mathematical Induction. A very simple and powerful method to prove theorems. The “strongest”
form goes as follows: To prove a statement of the form ∀n ∈ N : P (n), it suffices to do the following.

– Base Case. Check P (1) is true. Sometimes, you need to check P (1), P (2), . . . , P (c) is true for
some finite c.

4

– Inductive Case.
∗ Fix k ∈ N such that k ≥ c; c is the point to which you have checked base cases.
∗ The inductive hypothesis(IH) is that P (1) ∧ P (2) ∧ · · · ∧ P (k) is true.
∗ Use IH to prove P (k + 1) is true.

• Kind of things we proved using induction.

– Summations. Proving
∑n
i=1 i = n(n+ 1)/2,

∑n
i=1 i

2 = n(n+ 1)(2n+ 1)/6, and so on.

– Divisibility Facts. 3 divides n3 − n, 7 divides 32n − 2n.

– Integer Combinations. Any number n ≥ 12 can be written as 3x+ 7y for non-negative integers x, y.

– Recurrences. You proved a bunch of facts about Fibonacci numbers.

• Strengthening the Induction Hypothesis. With induction, sometimes non-intuitive things happen.
Sometimes, it is easier to prove harder things.

– Recurrence Inequalities. Sometimes having a stronger RHS leads to inductive proofs. This will be very
useful in analysis of algorithms.

– The Bernoulli Inequality. For any real x ≥ −1 and any number n, we have (1+x)n ≥ (1+nx). We used
this to establish (1 + 1/n)n ≥ 2 for all n. The latter is a bit painful to do with vanilla induction without
the strengthening.

• Proving Programs Correct. Induction is the way to prove correctness of recursive algorithms. This
needed us to understand “what we induct on” since programs don’t always take numbers as input,
but take more interesting data types. The “size” is often the thing we induct on, but the right notion
is key.

• The Product Principle. If we need to count a number of valid length k sequences, which satisfies the
following property: the first character has N1 choices, and for every choice of the first character, the
second character hasN2 choices, and given any choices of the first two characters, there areN3 choices
for the third character, and so on and so forth, the kth character has Nk choices, then the number of
valid sequences is N1 ·N2 · · ·Nk.

Armed with this, we can count the

– Number of length n bit strings (Ans: 2n)
– Number of permutations of (1, 2, . . . , n) (Ans: n!)
– Number of seven letter words with no vowels. (Ans: figure it out!)
– Number of four digit number whose first two digits sum to 8. (Ans: figure it out!)

• The Sum Principle (I). If S is the set of items we want to count (that is, we are trying to figure out
|S|), and S can be partitioned into subsets A1, A2, . . . , Ak which are pairwise disjoint, where each Ai is
easy to count, then we can count S using |S| = |A1|+ |A2|+ · · ·+ |Ak|.
Armed with this, we can count the

– Number of four digit number whose first two digits sum to 8.
– Number of length n bit strings with exactly two ones.

• The Sum Principle (II): Inclusion-Exclusion. At times, it is hard to partition the set S into disjoint
subsets. Instead, suppose we can find sets A and B which are easy to count, and A ∩B is also easy to
count, and S = A ∪ B, then we can figure out |S| by using |S| = |A| + |B| − |A ∩ B|. If we can find
three setsA,B,C such that S = A∪B∪C, andA,B,C and all the intersections are easy to count, then
we can figure out |S| by the (toddler) version of inclusion-exclusion: |S| = |A|+ |B|+ |C| − |A∩B| −

5

|A ∩C| − |B ∩C|+ |A ∩B ∩C|. And why stop there; when S is the union of k sets A1, . . . , Ak and all
the intersections are easy to count, then indeed, |S| can be found by the general inclusion-exclusion
formula.

Armed with this, we can count

– How many numbers between 1 and 100 are divisible by 2 or 3?
– How many numbers between 1 and 100 are divisible by 2, 3, or 5?
– How many length n bit strings start with 3 zeros or end with 3 ones?

• The Bijective Principle. If we can find a bijection f : A→ S from a set A to our set S, where A is easy
to count, then we have counted S since |S| = |A|.
Armed with this, we can count the

– Number of subsets of an n element universe. Ans : The bijection is from n length bit strings.
– Number of odd subsets of an n element universe. Ans: The odd sets biject with the even sets.

• The Division Principle. If we can find a mapping f : A → S from a set A, which is easy to count, to
our set S in consideration, such that for all s ∈ S, we have |{a ∈ A : f(a) = s}| = k, then |S| = |A|/k.

Armed with this, we can count the

– Number of anagrams of the word MASSACHUSETTS.
– Number of n-length bit strings with exactly k ones.

• The Four Fold Formula. If we have to choose k items out of (many copies of) n distinct items, how
many ways can we do it? The answer depends on whether we are allowed to pick more than one
copy of an item (repetition), and whether or not the order in which we pick the k items matters.

Order Matters Order Doesn’t Matter
Repetition nk

(
n+k−1

k

)
No Repetition n!

(n−k)!

(
n
k

)
= n!

k!(n−k)!

• Combinatorial Identities. A very useful way of proving identities (equations) is to show that the LHS
and the RHS are just two different ways of counting the size of the same set. Using this idea, we can
show the following

– (Pascal’s Identity).
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
.

– (Binomial Expansion). (x+ y)n =
∑n
k=0

(
n
k

)
xkyn−k.

The Binomial Expansion, in turn, implies

–
∑n
k=0

(
n
k

)
= 2n (set x = 1, y = 1).

–
∑n
k=0

(
n
k

)
(−1)

k
= 0 (set x = −1, y = 1).

–
∑n
k=0

(
n
k

)
1
2k =

(
3
2

)n (set x = 1/2, y = 1).

• Experiments and Outcomes: Sample Space Every time a probabilistic question is asked, figure out
the sample space: that is, figure out what the unknown random experiment is, and what is the set of
possible outcomes.

• Events. Figure out the subset of outcomes you are interested in. This subset is the event you are
interested in.

6

• The Probability Distribution. Finally, we need to figure out the function or the probability distribu-
tion Pr : Ω → [0, 1] such that

∑
ω∈Ω Pr[ω] = 1. Given this distribution, we can answer what the

chance/likelihood/probability of an event E is: it is
∑
ω∈E Pr[ω].

At some level, modelling assumptions dictate the distribution. Make as few and as natural assumptions.

• Tree Diagrams. For small problem, the tree diagram which starts with our state of the world and
goes through all possibilities is a sure-shot way of figuring out the probabilities of all outcomes. It
gets unwieldy soon, but very useful for intuition.

• Operations on Events.

– Given an event E , the negation event ¬E is used to denote the event that E doesn’t take place.
That is, it is simply the subset ¬E = Ω \ E . Sometimes, ¬E is denoted as E .

Pr[E] + Pr[¬E] = 1

– Given two events E and F , the notation E ∪ F is precisely the union of the subsets in the sample
space. Pr[E ∪ F] captures the likelihood that at least one of the events takes place.

– Given two events E and F , the notation E ∩ F is precisely the intersection of the subsets in the
sample space. Pr[E ∩ F] captures the likelihood that both the events takes place.

– Two events E and F are disjoint or exclusive if E ∩ F = ∅. That is, they both can’t occur simulta-
neously. A collection of events E1, E2, . . . , Ek are mutually exclusive if Ei ∩ Ej = ∅ for i 6= j.

– For mutually exclusive events,

Pr[E1 ∪ E2 ∪ · · · Ek] =

k∑
i=1

Pr[Ei]

– The Inclusion-Exclusion formula (for two events, aka Baby version) tells us

Pr[E ∪ F] = Pr[E] + Pr[F]−Pr[E ∩ F]

• Conditional Probability. For any two events A and B, we have

Pr[A | B] =
Pr[A ∩ B]

Pr[B]

• Chain Rule. For any set of events A1,A2, ·,Ak,

Pr[A1 ∩ A2 ∩ · · ·Ak] = Pr[A1] ·Pr[A2 | A1] ·Pr[A3 | A1 ∩ A2] · · ·Pr[Ak | A1,A2, . . . ,Ak−1]

• The Law of Total Probability. For any two events A and B, we have

Pr[A] = Pr[A | B] ·Pr[B] + Pr[A | ¬B] ·Pr[¬B]+

More generally, if B1,B2, . . . ,Bk are k mutually exclusive events with
∑k
i=1 Pr[Bi] = 1, then

Pr[A] =

k∑
i=1

Pr[A | Bi] ·Pr[Bi]

• Independence and Conditional Independence. Two events A and B are independent if Pr[A ∩ B] =
Pr[A] ·Pr[B].

Two events A and B are conditionally independent given another event E if Pr[A ∩ B | E] = Pr[A | E] ·
Pr[B | E].

7

• Bayes Rule. For any two events A and B, we have

Pr[B | A] =
Pr[A | B] ·Pr[B]

Pr[A]

The most common use is when B indicates a hypothesis, Pr[B] is our prior belief about the hypothesis,
A is an outcome, and Pr[B | A] is our posterior belief about the hypothesis given the outcome has
occurred.

• Random Variables. A random variable is a function/mappingX : Ω→ Range from the set of outcomes
to a range. Usually the range is the set of natural numbers, but it could be reals, integers, etc.

• Expectation of a Random Variable. The expectation of a random variable is an “weighted average”
defined as

Exp[X] :=
∑
ω∈Ω

X(ω) ·Pr[ω]

• Linearity of Expectation. For any k random variables X1, X2, . . . , Xk, we have

Exp[

k∑
i=1

Xi] =

k∑
i=1

Exp[Xi]

One cannot understate the importance of this above fact.

• Independent Random Variables. Two random variables X and Y are independent if for any x, y in
their ranges

Pr[X = x, Y = y] = Pr[X = x] ·Pr[Y = y]

k random variables X1, X2, . . . , Xk are pairwise independent if any two of them are independent. They
are mutually independent if for any x1, x2, . . . , xk, we have

Pr[X1 = x1, X2 = x2, · · · , Xk = xk] =

k∏
i=1

Pr[Xi = xi]

• Expectation of Product of Mutually Independent Random Variables. If X1, . . . , Xk are mutually
independent random variables, then

Exp[

k∏
i=1

Xi] =

k∏
i=1

Exp[Xi]

• Variance of a Random Variable. Given a random variable X , the variance Var[X] is defined as

Var[X] := Exp[(X −Exp[X])2] = Exp[X2]− (Exp[X])2

The standard deviation is defined as
σ(X) :=

√
Var[X]

• Linearity of Variance for Pairwise Independent Random Variables. Given k pairwise independent
random variables X1, . . . , Xk, we have

Var[

k∑
i=1

Xi] =

k∑
i=1

Var[Xi]

8

• Concentration around the mean: Chebyshev’s Inequality For any random variable X and for any
t > 0, we have

Pr
[
|X −Exp[X]| ≥ t

]
≤ Var[X]

t2

As a corollary we get that the probability X is not in the range
[
Exp[X]− cσ(X),Exp[X] + cσ(X)

]
is

at most 1
c2 .

• Graphs: Notations and Definitions.

– Given an edge e = (u, v), the vertices u and v are the endpoints of e. We say e connects u and v. We
say that u and v are incident to e.

– Two vertices u, v ∈ V are adjacent or neighbors if and only if (u, v) is an edge.
– The incident edges on v is denoted using the set ∂(v). So,

∂G(v) := {(u, v) : (u, v) ∈ E}

We lose the subscript if the graph G is clear from context.
– Given a vertex v, the neighborhood of v is the set of neighbors of v. This is denoted sometimes as N(v)

or sometimes as Γ(v). So,
NG(v) := |{(u, v) : (u, v) ∈ E}|

if the graph G is clear from context.
– The cardinality of NG(v) is called the degree of vertex v. We denote it using degG(v). This counts the

number of neighbors of v. Note that,

degG(v) = |NG(v)| = |∂G(v)|

– A vertex v is isolated if its degree is 0. That is, it has no edges connected to it.
– A graph G = (V,E) is called regular if all degrees are equal, that is, degG(v) = degG(u) for all u and v.
– Given a graphG = (V,E), we use V (G) to denote V andE(G) to denoteE. This notation is useful when

we are talking about multiple graphs.

• The Handshake Lemma. In any graph G = (V,E),∑
v∈V (G)

degG(v) = 2|E(G)|

• Perambulations in Graphs. Fix G = (V,E)

– A walk w in G is an alternating sequence of vertices and edges

w = (v0, e1, v1, e2, v2, . . . , ek, vk)

such that the ith edge ei = (vi−1, vi) for 1 ≤ i ≤ k. Both edges and vertices can repeat.

– A trail t in G is a walk with no edges repeating.

– A path p in a graph G is a walk with no vertices repeated.

– A closed walk is a walk whose origin and destination are the same vertex.

– A circuit is a closed trail of length at least 1.

– A cycle is a circuit with no vertex other than the source and destination repeating.

• Connectivity, Forests, and Trees.

9

– u is reachable from v in G if there is a walk from u to v in G. A graph G is connected if any vertex
is reachable from another vertex.

– Walk from u to v implies a path from u to v.

– A forest is a graph with no cycles.

– A tree is a forest which is connected.

• Tree Theorem.

Let G = (V,E) be a graph. The following are equivalent statements.

1. G is a tree.
2. G has no cycles and adding any edge to G creates a cycle.
3. Between any two vertices in G there is a unique path.
4. G is connected, and deleting any edge from G disconnects the graph, and the resulting graph has exactly

two connected components.
5. G is connected and |E| = |V | − 1.
6. G has no cycles and |E| = |V | − 1.

• Bipartite Graphs.

A graph G = (V,E) is bipartite if the vertex set V can be partitioned into V = L ∪ R and L ∩ R = ∅
such that every edge (x, y) has exactly one endpoint in L and the other endpoint in R.

G is bipartite ⇔ G has no cycles of odd length

• Matchings.

A matching M ⊆ E is a subset of edges such that no two edges in M share an endpoint. In other
words, a matching is a collection of pairwise disjoint set of edges.

• Matchings in Bipartite Graphs: Hall’s Theorem.

Let G = (L ∪ R,E) be a bipartite graph. A matching M is an L-matching if every vertex of L is an
endpoint of some edge in M . G has an L-matching if and only if

For every subset S ⊆ L, |NG(S)| ≥ |S|

10

