1. Recap. Let us recap some facts we will be needing for today's class.

(a) For any three positive numbers \(a, b, n\), we can efficiently compute \(a^b \mod n\) using \textsc{ModExp}.

(b) For any two positive numbers \(a, b\), we can efficiently compute integers \(x, y\) such that \(xa + yb = \gcd(a, b)\) using \textsc{ExtGCD}.

(c) In particular, if \(\gcd(a, n) = 1\), we can efficiently compute integers \(x, y\) such that \(xa + yb = 1\).

(d) Therefore, if \(\gcd(a, n) = 1\), we can efficiently compute \(a^{-1} \mod n\); the number \(b\) such that \(ab \equiv 1\). We do this by taking \(x \mod n\) for the \(x\) in the above bullet point.

(e) If \(p\) is a prime and \(\gcd(a, p) = 1\), then \(a^{p-1} \equiv 1\).

(f) (Problem Set 3, 2(d)): If \(p|a\) and \(q|a\) where \(p\) and \(q\) are distinct primes, then \(pq|a\).

2. Cryptography. Alice wants to send a message \(m\) to Bob. Unfortunately, the channel in which Alice is speaking to Bob is completely transparent and can be plainly read. So, she wants to instead send a cipher \(c\) such that (a) upon receiving \(c\), Bob can figure out \(m\), but (b) any one else, say Eve, upon receiving \(c\) can't obtain any information about \(m\).

As can be seen, some asymmetry is required between Bob and Eve. The "traditional" way of achieving this is that Alice and Bob pre-decide on some information called a key and use it to figure out \(c\) from \(m\). This key is something that only Alice and Bob know; in particular, the eavesdropper Eve doesn't.

For instance, the key could be some long integer \(k\) of the same length as \(m\), and Alice can encrypt \(m\) to get cipher \(c\) by letting \(c_i = (m_i + k_i) \mod 10\) for every digit \(i\). Note that Bob can easily decrypt since he has the key \(k\): he does the opposite action of \((c_i - k_i) \mod 10\). Also note that Eve can have no idea what \(m\) was by just looking at \(c\) since \(k\) can be an arbitrary key.

One issue with the above protocol is that Alice and Bob need to agree upon the key beforehand. It can be shown that if the same key is used repeatedly, then Eve can actually figure out the key (especially if she can impersonate as Alice). So, keys need to be constantly generated and shared; but then if Alice and Bob can share keys secretly often, why not just use that time to swap the messages?

3. Public Key Cryptography (PKC). This is a fantastic idea which gets over the key sharing business.

In this every person who wishes to receive a message (say Bob, or any website who needs credit card info) generates two keys. One key is the public key \(pk\) which they announce to the world. The other is the secret key \(sk\) which they guard with their lives. To summarize, the
key they generate is a tuple \((pk, sk)\); \(pk\) they tell everyone, and \(sk\) they tell no one (including Alice).

A PKC protocol consists of two functions/algorithms \(Enc\) and \(Dec\). Both of these are also public; the code is also published by Bob.

Now, if Alice wants to send a message to Bob, she can encrypt a message \(m\) using the public key to get

\[
\text{Enc}(m, pk) \mapsto c
\]

She then sends \(c\) across to Bob. Note that Eve knows \(c\) and knows \(pk\) and also knows the algorithm \(Enc\). She still shouldn’t have any clue what \(m\) is. In other words, it shouldn’t be easy for Eve to invert this function \(Enc\).

Bob, upon receiving the cipher \(c\), then uses the decryption algorithm \(Dec\) to get the message back. This decryption algorithm will use both keys.

\[
\text{Dec}(c, pk, sk) \mapsto m
\]

4. The RSA Algorithm.

(a) Key Generation.

- Bob picks two primes \(p\) and \(q\); these will be large, distinct primes.
- Let \(N := pq\) and let \(\phi := (p - 1)(q - 1)\).
- Bob picks another number \(e\) such that \(\gcd(e, \phi) = 1\).
- Bob computes the multiplicative inverse of \(e\) modulo \(\phi\). Call it \(d\).
- Bob’s public key is \((e, N)\).
- Bob’s secret key is \(d\).

(b) The Encryption algorithm is as follows.

- Suppose Alice wants to send \(m\) to Bob. We assume \(m \in \{1, 2, \ldots, N-1\}\); otherwise, Alice needs to break her message into pieces.
- Alice’s cipher \(c = m^e \pmod N\); she evaluates this using Bob’s public key \((e, N)\) and uses modular exponentiation.

(c) The Decryption algorithm is as follows.

- Upon receiving \(c\), Bob recovers the message \(m\) using his secret key \(d\) by computing \(c^d \pmod N\).

5. RSA example. Suppose Bob selects two primes say \(p = 5\) and \(q = 11\). Then \(N = 55\) and \(\phi = 40\). Bob selects a number \(e = 13\) such that \(\gcd(e, \phi) = 1\). He then calculates \(d = e^{-1} \pmod \phi\) using the EXTGCD algorithm; in this case \(37 = 13^{-1}\) with respect to \(40\). Bob’s public key is \((13, 55)\) while is secret key is \(37\).

Now suppose Alice wants to encrypt a message in \(\{1, 2, \ldots, 54\}\); say 29. The encryption is

\[
\text{Enc}(21, 13, 55) = 29^{13} \pmod {55} = 24
\]

To decrypt this, Bob does the following

\[
\text{Dec}(24, 37) = 24^{37} \pmod {55} = 29
\]
6. **Correctness of RSA.** We prove that as long as \(m \in \{0, 1, 2, \ldots, N-1\} \), then if Alice sends the cipher according to the RSA encryption algorithm, then Bob will get back the same \(m \) when he decrypts. In particular, we prove the following theorem.

Theorem 1. Let \((e, N), d\) be the (public,secret) key pairs generated by Bob. Then for any \(m \in \{0, 1, 2, \ldots, N-1\} \), Alice sends \(c = m^e \mod N \). Then, \(c^d \mod N = m \).

Proof. We show this proof in the case when \(\gcd(m, p) = \gcd(m, q) = 1 \); we leave the other cases as an exercise.

We need to show \(c^d \mod N = m \), that is, we need to show \(m^{ed} \equiv_N m \), that is

\[
\text{We need to show } \quad \left(m^{ed} - m \right) \equiv_N 0 \quad (1)
\]

Now, \(d \) is the inverse of \(e \) modulo \(\phi = (p - 1)(q - 1) \). Thus,

\[
ed \equiv_\phi 1 \quad \Rightarrow \quad ed = \phi \cdot x + 1 \quad \text{for some integer } x
\]

Therefore,

\[
\left(m^{ed} - m \right) \equiv_N \left(m^{\phi \cdot x + 1} - m \right) \equiv_N m \cdot \left(m^{\phi \cdot x} - 1 \right) \quad (2)
\]

Now, \(\gcd(m, p) = 1 \) implies, using Fermat’s Little Theorem, \(m^{p-1} \equiv_p 1 \). Taking both sides to the power \((q - 1)x\), we get \(m^{(p-1)(q-1)x} \equiv_p 1 \), that is,

\[
m^{\phi \cdot x} - 1 \equiv_p 0
\]

Similarly, since \(\gcd(m, q) = 1 \),

\[
m^{\phi \cdot x} - 1 \equiv_q 0
\]

Now we are going to use the PSet3,2(d) to conclude

\[
m^{\phi \cdot x} - 1 \equiv_{pq} 0 \quad \text{that is} \quad m^{\phi \cdot x} - 1 \equiv_N 0
\]

Substituting in (2), we see that we establish (1). \(\square \)

7. **A very short discussion on security of RSA.** Why RSA is secure is beyond the scope of this course. But take CS62 someday or some other security course.

However, it is useful to point out one thing that would surely make RSA **insecure**. Suppose, we had a fast procedure to **factor** numbers. That is, given \(N \) we could find the factors which form \(N \). For example, given 21 we would know it is \(3 \times 7 \). At first you may feel, sure, such a procedure must exist. But imagine the case when \(N \) has 256 digits.

As of today, no efficient procedure is known for factoring such large numbers. And indeed RSA’s security completely depends on this. For suppose we could factor, then given \(N \) which is promised to be \(pq \), we could factor and get \(p \) and \(q \). And then we could get \(\phi \), and then we could find the inverse of \(e \) with respect to \(\phi \) and get Bob’s secret key \(d \).