1. **Random Variable.**

Given a random experiment with outcomes Ω, a *real valued random variable* X defined over this experiment is a mapping $X : \Omega \rightarrow \mathbb{R}$. An *integer valued random variable* X is a mapping from $X : \Omega \rightarrow \mathbb{Z}$.

Examples:

- We toss a fair coin. $X(\text{heads}) = 0$ and $X(\text{tails}) = 1$. This is a $\{0, 1\}$-random variable, or a Boolean random variable. Also called a *Bernoulli* random variable.
- We roll a fair die. X takes the value on the face of the die.
- We roll two fair dice. X takes the value of the sum. In this case, $X = Y + Z$ where Y, Z are random variables of the kind from the previous bullet point.
- Given any event E, there is an associated random variable called the *indicator random variable* denoted as 1_E, where $1_E(\omega) = 1$ if $\omega \in E$, and 0 otherwise.

2. **Events associated with random variables.**

Given a random variable X, we can associate many events and ask for their probabilities. For instance, we can ask $\Pr[X = x]$. More precisely, this is a shorthand for saying $\sum_{\omega \in \Omega : X(\omega) = x} \Pr[\omega]$.

Similarly, $\Pr[X \geq k]$ is a shorthand for saying $\sum_{\omega \in \Omega : X(\omega) \geq k} \Pr[\omega]$.

3. **Expectation of a Random Variable.**

Theorem 1. The expectation of a random variable X is defined to be

$$\text{Exp}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr[\omega] = \sum_{x \in \text{range}(X)} x \cdot \Pr[X = x]$$

Remark: The expectation is therefore often thought of as an inner-product (aka dot-product) of two vectors. These vectors have $|\Omega|$ dimensions. One vector is $(X(\omega) : \omega \in \Omega)$, and the other is $(\Pr[\omega] : \omega \in \Omega)$. This dot-product view is often useful (although, sadly, we may not see its ramifications in this course).

Examples:
• We toss a fair coin. \(X(\text{heads}) = 0\) and \(X(\text{tails}) = 1\). This is a \(\{0, 1\}\)-random variable, or a Boolean random variable. Also called a Bernoulli random variable.

\[
\text{Exp}[X] = 0 \cdot \Pr[X = 0] + 1 \cdot \Pr[X = 1] = 1/2
\]

Indeed, if the coin were not fair, and the probability that tails would come with probability \(p\), then \(\text{Exp}[X] = p\).

• We roll a fair die. \(X\) takes the value on the face of the die.

\[
\text{Exp}[X] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5
\]

• We roll two fair dice. \(X\) takes the value of the sum. In this case, \(X = Y + Z\) where \(Y, Z\) are random variables of the kind from the previous bullet point.

This is requires a little work. The range of \(X\) is \(\{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}\). We can calculate the probabilities for each (remember, it is not uniform), and then do the calculation.

Exercise: Please do the calculation.

We get the answer 7. Did you?

• Given any event \(E\), there is an associated random variable called the indicator random variable denoted as \(1_E\), where \(1_E(\omega) = 1\) if \(\omega \in E\), and 0 otherwise.

\[
\text{Exp}[1_E] = 0 \cdot \Pr[\neg E] + 1 \cdot \Pr[E] = \Pr[E]
\]

This is quite important. Why? Because it turns a probability calculation (the RHS) into an expectation calculation. As we show below, calculating expectations is often easier than calculating probabilities.

Exercise: Suppose you have a fair coin. Construct the following random variable \(Z\) whose range is \(\mathbb{N}\). You keep tossing the fair coin till you get a heads. \(Z\) is the number of times you have tossed the coin. What is \(\text{Exp}[Z]\)?

4. **Multiplication by a scalar.** If \(X\) is a random variable, and \(c\) is a “scalar” (a constant), then \(Z = c \cdot X\) is another random variable. \(\text{Exp}[c \cdot X] = c \cdot \text{Exp}[X]\).

Exercise: Prove this.

5. **Linearity of Expectation.** This is one of the most powerful equations in all of probability. Literally. It states the following. It literally has a four line proof.

Theorem 2. For any two random variables \(X\) and \(Y\), let \(Z := X + Y\). Then,

\[
\text{Exp}[Z] = \text{Exp}[X] + \text{Exp}[Y]
\]
Proof.

\[
\begin{align*}
\mathbb{E}[Z] &= \sum_{\omega \in \Omega} Z(\omega) \Pr[\omega] \quad \text{Definition of Expectation} \\
&= \sum_{\omega \in \Omega} (X(\omega) + Y(\omega)) \Pr[\omega] \quad \text{Definition of } Z \\
&= \sum_{\omega \in \Omega} X(\omega) \Pr[\omega] + \sum_{\omega \in \Omega} Y(\omega) \cdot \Pr[\omega] \quad \text{Distributivity} \\
&= \mathbb{E}[X] + \mathbb{E}[Y] \quad \text{Definition of Expectation}
\end{align*}
\]

As a corollary, we get:

Theorem 3. For any \(k\) random variables \(X_1, X_2, \ldots, X_k\),

\[
\mathbb{E}\left[\sum_{i=1}^{k} X_i \right] = \sum_{i=1}^{k} \mathbb{E}[X_i]
\]

Examples of applications.

(a) We roll two fair dice. \(X\) takes the value of the sum. In this case, \(X = Y + Z\) where \(Y, Z\) are random variables of the kind from the previous bullet point.

Tailor-made application. \(\mathbb{E}[Y] = \mathbb{E}[Z] = 3.5\), the expected value of a single roll of a die. Thus, \(\mathbb{E}[X] = \mathbb{E}[Y + Z] = 7\) by linearity of expectation.

(b) We have a biased coin which lands heads with probability \(p\). We toss it 100 times. Let \(X\) be the number of heads we see. What is \(\mathbb{E}[X]\)?

Remark: Try doing this the “first-principle” way. That is, for each \(0 \leq k \leq 100\), figure out the probability \(\Pr[X = k]\) (that is, the probability we get exactly \(k\) heads), and then sum \(\sum_{k=0}^{100} k \cdot \Pr[X = k]\). Please try it; feel the sweat needed to do this. It will make you appreciate the next three lines more!

Define new random variables; define \(X_i\) to take the value 1 if the \(i\)th toss is heads, and 0 otherwise. Note, \(X = X_1 + X_2 + \cdots + X_{100}\). Note, \(\mathbb{E}[X_i] = p\) (it is a Bernoulli random variable). Thus, linearity of expectation gives \(\mathbb{E}[X] = 100p\).

(c) \(n\) people checked in their hats, but on their way out, were handed back hats randomly. What is the expected number of people who get their correct hats?

Define \(X_i\) to be 1 if the \(i\)th person gets his or her back correctly. What is \(\mathbb{E}[X_i]\)? It is \(1/n\); it is the probability that \(\sigma(i) = i\) for a random ordering \(\sigma\). Let \(Z = \sum_{i=1}^{n} X_i\). Note, \(Z\) is the number of people who get their correct hats. By linearity of expectation, \(\mathbb{E}[Z] = 1\).
(d) In a party of \(n \) people there are some pairs of people who are friends, and some pairs who are not. In all there are \(m \) pairs of friends. The host randomly divides the party by taking each person and sending them left or right at the toss of a fair coin. How many friends are sent apart (in expectation)?

Remark: A graph is randomly split into two. How many edges, in expectation, have endpoints in different parts?

For each pair of friends \((u, v)\), define \(X_{uv} \) which takes the value 1 if \(u \) and \(v \) are split, and takes the value 0 if \(u \) and \(v \) are not split. The probability \(u \) and \(v \) are split is \(\frac{1}{2} \) (either \(u \) is sent left, \(v \) is sent right, or vice-versa). Thus, \(\mathbb{E}[X_{uv}] = \frac{1}{2} \). Define \(Z = \sum_{(u,v) \text{: friends}} X_{uv} \); \(Z \) is the number of friends sent apart. \(\mathbb{E}[Z] = \sum_{(u,v) \text{: friends}} \mathbb{E}[X_{uv}] = \frac{m}{2} \). In expectation, half the friendships are sundered apart.

(e) In an ordering \(\sigma \) of \((1, 2, \ldots, n) \), an inversion is a pair \(i < j \) such that \(\sigma(i) > \sigma(j) \). How many inversions, in expectation, are there in a random permutation?

Let \(\sigma \) be a random permutation. Define the indicator random variable \(X_{ij} \) for \(i < j \), which takes the value 1 if \(\sigma(i) > \sigma(j) \), and 0 otherwise. Note that \(\Pr[X_{ij} = 1] = \frac{1}{2} \); there are equally many orderings with \(\sigma(i) > \sigma(j) \) as \(\sigma(i) < \sigma(j) \). Now note that \(Z = \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij} \) is the number of inversions in \(\sigma \). Thus, \(\mathbb{E}[Z] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \mathbb{E}[X_{ij}] = \frac{1}{2} \cdot \frac{n(n-1)}{2} \).