1. Recap.

A graph $G = (V, E)$ is bipartite if there is partition of $V = L \cup R$ such that $L \cap R = \emptyset$ and for every edge $e = (u, v) \in E$, we have $|\{u, v\} \cap L| = |\{u, v\} \cap R| = 1$. That is, every edge has exactly one endpoint in L and exactly one endpoint in R.

A matching M in a graph is a subset of edges $M \subseteq E$ such that for any $e, e' \in M$, $e \cap e' = \emptyset$. That is, M is a collection of edges which do not share end points. A vertex $v \in V$ participates in the matching M if there is an edge in M which is incident to v. In a bipartite graph $G = (L \cup R, E)$, a matching $M \subseteq E$ is an L-matching if all vertices in L participate in M.

Given any subset $S \subseteq L$, we $N_G(S)$ are the set of vertices in R which neighbors of some vertex in S. Hall’s Theorem says the following.

Theorem 1. Let $G = (V, E)$ be a bipartite graph with $V = L \cup R$. Then, G has an L-matching if and only if

For every subset $S \subseteq L$, $|N_G(S)| \geq |S|$

(Hall’s Condition)

Proof. Again, one direction is easy. That is, if $G = (L \cup R, E)$ has an L-matching, then we must have (Hall’s Condition). Why? Suppose there exists an L-matching called M. Then for any $S \subseteq L$, consider the set $T = \{v \in R : \exists u \in S : (u, v) \in M\}$. That is, look at all the partners in M, of vertices in S. Clearly, $T \subseteq N_G(S)$, and thus, $|N_G(S)| \geq |T|$. And $|T| = |S|$ since every vertex in S has a partner in M $(M$ is an L-matching). So, $|N_G(S)| \geq |S|$.

The interesting direction is the converse. Given that (Hall’s Condition) holds, we need to prove that $G = (L \cup R, E)$ has an L-matching. The proof is by induction on the number of vertices, but it has layers. So hold tight.

Let $P(n)$ be the predicate which is true if any bipartite graphs $G = (L \cup R, E)$ with $|L| = n$ satisfying (Hall’s Condition) has an L-matching.

We need to show $\forall n \in \mathbb{N} : P(n)$ is true; we proceed to prove this by induction.

Base Case: Is $P(1)$ true? Fix any graph $G = (L \cup R, E)$ with $|L| = 1$. Let $L = \{v\}$. (Hall’s Condition) implies, $\deg_G(v) \geq 1$. So, there is some edge (v, w) incident on v. $M = \{(v, w)\}$ is an L-matching. So, $P(1)$ is true.

Inductive Case: Fix a natural number k. We assume $P(1), P(2), \ldots, P(k)$ are all true. We wish to prove $P(k + 1)$. To that end, we fix a bipartite graph $G = (L \cup R, E)$ which satisfies (Hall’s Condition) and $|L| = k + 1$.
Let \(u \in L \) be an arbitrary vertex. (Hall’s Condition) implies \(\deg(u) \geq 1 \), thus there is at least one edge \((u, v) \in E\). Pick one such edge arbitrarily. Consider the graph \(G' = G - \{u, v\} \).

That is, we delete \(u \) and then we delete \(v \). \(G' \) is also a bipartite graph, with \(G = (L' \cup R', E') \) where \(L' = L - u, R' = R - v \) and \(E' = E \backslash (N_G(u) \cup N_G(v)) \).

We now fork into two cases.

Case 1: \(G' \) satisfies (Hall’s Condition). This is the easy case. Since \(|L'| = |L| - 1 = k \), and since by the induction hypothesis, \(P(k) \) is true, we get that \(G' \) has an \(L' \)-matching; let’s call it \(M' \). Then, \(M := M' \cup \{u, v\} \) is the required \(L \)-matching in \(G \). So in this case, we have proven \(P(k + 1) \).

Case 2: \(G' \) doesn’t satisfy (Hall’s Condition). What does this mean? It means there is some subset \(S \subseteq L' \), such that \(|N_{G'}(S)| < |S| \). On the other hand, since \(G \) did satisfy (Hall’s Condition), we have \(|N_G(S)| \geq |S| \). Finally, note that the only way \(N_{G'}(S) \) and \(N_G(S) \) can be different is if \(N_G(S) \) has the vertex \(v \) in it. And in that case, \(N_{G'}(S) = N_G(S) \setminus v \).

Therefore, we have \(v \in N_G(S) \) and furthermore, \(|N_G(S)| = |S| \); if \(|N_G(S)| > |S| \), then indeed, \(|N_G(S)| \geq |S| + 1 \) because the LHS is an integer, which in turn implies \(|N_{G'}(S)| = |N_G(S)| - 1 \geq |S| \).

Now, we consider two different graphs. We consider \(G_1 = G[S \cup N_G(S)] \) and \(G_2 = G[(L \setminus S) \cup (R \setminus N_G(S))] \). Recall, the notion of induced subgraphs. It is also a good idea to draw a picture here for yourself.

Claim 1. Both \(G_1 \) and \(G_2 \) satisfy (Hall’s Condition).

Proof. Let’s first prove for \(G_1 \). Any subset \(T \subseteq S \) has \(N_G(T) \subseteq N_G(S) \). Thus, \(N_{G_1}(T) = N_G(T) \) as well. Since \(G \) satisfied (Hall’s Condition), we get \(|N_{G_1}(T)| = |N_G(T)| \geq |T| \). Thus, \(G_1 \) satisfies (Hall’s Condition).

Moving on to \(G_2 \). Fix a subset \(T \subseteq L \setminus S \). What is \(N_{G_2}(T) \)? Here is an useful observation:

\[N_{G_2}(T) = N_G(T) \setminus N_G(S) = (N_G(S \cup T) \setminus N_G(S)) \]

The first equality follows since the neighbors of \(T \) in \(G_2 \) are precisely the neighbors of \(T \) in \(G \) which are not the neighbors of \(S \) in \(G \). The second equality is the clever part; it is noting that even if we look at neighbors of \(S \cup T \) in \(G \) and remove the neighbors of \(S \), we still get the neighbors of \(T \) in \(G \) which are not in \(N_G(S) \). Why is this useful? Because, \(N_G(S) \subseteq N_G(S \cup T) \). Thus, we know that \(|N_G(S \cup T) \setminus N_G(S)| = |N_G(S \cup T)| - |N_G(S)| \).

Putting all together, we get

\[|N_{G_2}(T)| = |N_G(S \cup T)| - |N_G(S)| \geq |S \cup T| - |S| = |T| \]

where the inequality follows since \(|N_G(S \cup T)| \geq |S \cup T| \) by (Hall’s Condition) and since \(|N_G(S)| = |S| \), and the second equality follows since \(S \cap T = \emptyset \).

Since both \(G_1 \) and \(G_2 \) satisfy (Hall’s Condition), and since both \(|S| \) and \(|L \setminus S| \) are < \(|L| \), by the induction hypothesis, we get that \(G_1 \) has an \(S \)-matching called \(M_1 \) and \(G_2 \) has an \(L \setminus S \)-matching called \(M_2 \). Thus, \(M_1 \cup M_2 \) is the \(L \)-matching in \(G \). Done!