
CS 30: Discrete Math in CS (Winter 2020): Lecture 15-Supplement
Date: 5th February, 2020 (Wednesday)

Topic: Probability: Conditional Independence
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Conditional Independence.

Consider the following two events. There lies in front of you a fair coin. Alice tosses it.
Then Bob tosses the same coin. Let A be the event that Alice gets heads. Let B be the event
that Bob gets heads. Are these independent? Even before doing the calculation, you would
say sure. Alice’s toss shouldn’t hinder Bob’s toss. Indeed, both Pr[A] = Pr[B] = 1/2 and
Pr[A ∩ B] = 1/4. These are independent. b

Exercise: Check that A and B are independent even when the coin is not fair, but instead it
came heads all the time, or came heads 90% of the time.

Now consider a slightly different experiment. In a box lies two coins. One is fair. The other is
biased and tosses heads with probability 0.75. You pick up a coin from these two at random
and place it in front of you. Alice tosses it. Bob tosses the same coin. A and B are same as
above. Are these independent events?

To see that they are not before doing any calculations, take the experiment to an extreme.
Suppose both the coins in the box were super un-fair; suppose one of them came tails all
the time, and the other came heads all the time. Then note, if A occurs, then B occurs with
100% probability (if Alice sees a head, then she has for sure picked the all-heads coin, and so
Bob will for sure see a heads as he is tossing the same coin). On the other hand, none of the
events individually is a sure-shot. Thus, A and B aren’t independent.

However, there is a third random event here. It is the event E which is whether I pick the fair
coin or not. I claim that A and B are independent if we condition on E . That is, I claim

Pr[A ∩ B ∣ E] = Pr[A ∣ E] ⋅Pr[B ∣ E]

Indeed, if I tell you that E has occurred, then the problem becomes the one asked before;
given a fair coin tossed by Alice and Bob, the events that they see heads is independent. The
events A and B are therefore independent conditioned on the event E .

Remark: Conditional Independence is a tricky concept. Be wary. For example:

• “A and B are independent events. Then they are also conditionally independent on
any event E .”
False. Example: Roll two fair dice. A is the event that the first die is odd. B is the event
that the second die is odd. These are independent events. Now consider the event E that
the sum of the two dice is odd.. What is Pr[A ∣ E]? You can now calculate this – it is
1/2 as well. Similarly, Pr[B ∣ E] = 1/2. However, what is Pr[A ∩ B ∣ E]? Yep, it’s zero.
Independence can be lost upon conditioning.

• “A and B are conditionally independent given E . Then they are conditionally inde-
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pendent given ¬E as well.”
False. In its generality this is false, although in the above example of coins, it is true. To
see why it is false, we can consider again the setting of rolling two dice. However, this time
A occurs if the first die lands 1, and B occurs if the second die lands 1. E is the event that
the sum is 2; ¬E is the event that the sum is not 2.
Note: Pr[A ∣ E] = Pr[B ∣ E] = Pr[A ∩ B ∣ E] = 1. Thus, A and B are conditionally
independent given E . On the other hand, Pr[A ∣ ¬E] is something non-zero (figure out
what it is!), and Pr[B ∣ ¬E] is something non-zero. But, Pr[A ∩ B ∣ ¬E] is certainly
zero. Conditional Independence can be lost upon the negation of the event we are
conditioning on.

2. Revisiting the “Two-Tests” example. Suppose A is your initial belief you have an affliction
(based on, say, statistics). There is a test which has a false negative rate of fn and a false
positive rate of fp. That is, if you have the affliction, the probability the test says you don’t
is fn, and if you do not have the affliction, the probability the test says you do is fp. You take
the test once and see a positive. You take the test again and you see a positive. What are the
chances you do have the affliction. This is a problem we solved using Bayes law. And we
saw there were “two ways” to do this.

SayP1 is the event the first test comes positive. P2 is the event the second test comes positive.
After one test, the probability we do have the affliction is

Pr[A ∣ P1] =
Pr[P1 ∣ A] ⋅Pr[A]

Pr[P1]
(1)

and, the probability we do have an affliction after two tests coming positive is

Pr[A ∣ P1,P2] =
Pr[P1,P2 ∣ A] ⋅Pr[A]

Pr[P1,P2]
(2)

Now note, crucially, thatP1 andP2 are not independent. Much like the example above of the
coin being pulled out of a bag in the previous bullet point. However, they are conditionally
independent on both A and ¬A. That is,

Pr[P1,P2 ∣ A] = Pr[P1 ∣ A] ⋅Pr[P2 ∣ A] and Pr[P1,P2 ∣ ¬A] = Pr[P1 ∣ ¬A] ⋅Pr[P2 ∣ ¬A]

In particular, this implies

Pr[P2 ∣ A,P1] = Pr[P2 ∣ A] and Pr[P2 ∣ ¬A,P1] = Pr[P2 ∣ ¬A]

Where are we getting at? Well, now we can “simplify” (2) as

Pr[A ∣ P1,P2] =
Pr[P1,P2 ∣ A] ⋅Pr[A]

Pr[P1,P2]

=

(Pr[P2 ∣ A] ⋅Pr[P1 ∣ A]) ⋅Pr[A]

Pr[P2 ∣ P1] ⋅Pr[P1]
Cond. Indep.

=

Pr[P2 ∣ A]

Pr[P2 ∣ P1]
⋅ (

Pr[P1 ∣ A] ⋅Pr[A]

Pr[P1]
)
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Note that the paranthesized expression is precisely, by (1), Pr[A ∣ P1]. Thus, we get

Pr[A ∣ P1,P2] =
Pr[P2 ∣ A] ⋅Pr[A ∣ P1]

Pr[P2 ∣ P1]
(3)

Now, by the law of total probability,

Pr[P2 ∣ P1] = Pr[P2 ∣ A,P1] ⋅Pr[A ∣ P1] +Pr[P2 ∣ ¬A,P1] ⋅Pr[¬A ∣ P1]

and by conditional independence, we get

Pr[P2 ∣ P1] = Pr[P2 ∣ A] ⋅Pr[A ∣ P1] +Pr[P2 ∣ ¬A] ⋅ (1 −Pr[A ∣ P1])

Substituting in (3), we get

Pr[A ∣ P1,P2] =
Pr[P2 ∣ A] ⋅Pr[A ∣ P1]

Pr[P2 ∣ A] ⋅Pr[A ∣ P1] +Pr[P2 ∣ ¬A] ⋅ (1 −Pr[A ∣ P1])

which is exactly what you would have if only P2 occurred with the prior Pr[A] changed to
Pr[A ∣ P1].

3. An example with Bayes rule and Conditional Independence

Spam Filters. We are trying to train a (Bayesian) Spam Filter. We start with a corpus with 2000
spam messages and 1000 real messages. We observe that the word “Congratulations” appears in 100
spam messages, and 10 real messages. We also observe that the word “Account” appears in 160 spam
messages and 20 real messages. Assume you believe that any incoming email is possible spam with
probability 40%. What is the probability an incoming message is spam given it contains the word
“Congratulations”? What is the probability an incoming message is spam given it contains the word
“account”? What is the probability that the incoming message is spam, given it contains both words
“account” and “congratulations”? If we set a threshold of 90% to mark spam or not, in which of these
cases would we mark spam.

Consider an incoming email. Let S be the event that it is spam. The assumption we are
making is that Pr[S] = 0.4.

Let A be the event that the word “account” appears in the email. Let C be the event that
the word “congratulations” appears in the email. From the data, we deduce that in a random
spam message, the chances of seeing “congratulations” is 100

2000 = 0.05. Thus, we conclude

Pr[C ∣ S] = 0.05

Similarly, we conclude,

Pr[C ∣ ¬S] =

10

1000
= 0.01

since ¬S implies a ‘real’ message. Also, we conclude

Pr[A ∣ S] =

160

2000
= 0.08

3



and
Pr[A ∣ ¬S] =

20

1000
= 0.02

Now, we can apply Bayes rule to get

Pr[S ∣ A] =

Pr[A ∣ S] ⋅Pr[S]

Pr[A ∣ S] ⋅Pr[S] +Pr[A ∣ ¬S] ⋅Pr[¬S]
=

(0.08) ⋅ (0.4)

(0.08)(0.4) + (0.02)(0.6)

which computes to 0.727. That is, if we see the word “account” in an incoming mail, we
would believe the probability it is spam is around 72.7%. Thus, out spam-filter won’t mark
it spam.

Similarly, for “congratulations”, we get

Pr[S ∣ C] =

Pr[C ∣ S] ⋅Pr[S]

Pr[C ∣ S] ⋅Pr[S] +Pr[C ∣ ¬S] ⋅Pr[¬S]
=

(0.05) ⋅ (0.4)

(0.05)(0.4) + (0.01)(0.6)

which computes to around 0.769. That is, if we see the word “account” in an incoming mail,
we would believe the probability it is spam is around 77%. The spam-filter won’t mark this
spam.

How do we solve the next question – when we see both “congratulations” and “account”.
Well, we need to find

Pr[S ∣ A ∩ C] =

Pr[A ∩ C ∣ S] ⋅Pr[S]

Pr[A ∩ C]
(4)

We don’t know how to calculate Pr[A ∩ C ∣ S]. This is where (another) assumption, called
the Naive Bayes Assumption is made. In the setting of Spam Filters, it states that the events
A and S are conditionally independent on both spam (that is S) and real messages. What it says
that it does recognize that the distribution of these words (“congratulations”, “account”)
may not behave independently on the whole email corpus; but if we focus our attention to
the classes at hand, then it does. Again, this is an assumption, which is actually made out
there many time in the real world.

Pr[A∩C ∣ S] = Pr[A ∣ S]⋅Pr[C ∣ S], Pr[A∩C ∣ ¬S] = Pr[A ∣ ¬S]⋅Pr[C ∣ ¬S] (Naive Bayes)

Once we make it, then our calculations can start again. We get:

Pr[A ∩ C] = Pr[S] ⋅Pr[A ∩ C ∣ S] +Pr[¬S] ⋅Pr[A ∩ C ∣ ¬S]

and the RHS, with the Naive Bayes assumption, becomes

Pr[A ∩ C] = Pr[S] ⋅Pr[A ∣ S] ⋅Pr[C ∣ S] +Pr[¬S] ⋅Pr[A ∣ ¬S] ⋅Pr[C ∣ ¬S]

Substituting in the Bayes rule formula (4), we get

Pr[S ∣ A ∩ C] =

Pr[A ∣ S] ⋅Pr[C ∣ S] ⋅Pr[S]

Pr[S] ⋅Pr[A ∣ S] ⋅Pr[C ∣ S] +Pr[¬S] ⋅Pr[A ∣ ¬S] ⋅Pr[C ∣ ¬S]

which evaluates to

Pr[S ∣ A ∩ C] =

(0.05)(0.08)(0.4)

(0.05)(0.08)(0.4) + (0.02)(0.01)(0.6)
= 0.9302
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