
CS 30: Discrete Math in CS (Winter 2020): Lecture 16, 17
Date: 6th February, 2020 (X-hour) + 7th February, 2020 (Friday)

Topic: Probability: Random Variables, Expectation, Independence, Variance
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Random Variable.

Given a random experiment with outcomes Ω, a real valued random variable X defined over
this experiment is a mapping X ∶ Ω → R. An integer valued random variable X is a mapping
from X ∶ Ω→ Z.

Examples:

• We toss a fair coin. X(heads) = 0 and X(tails) = 1. This is a {0,1}-random variable, or
a Boolean random variable. Also called a Bernoulli random variable.

• We roll a fair die. X takes the value on the face of the die.

• We roll two fair dice. X takes the value of the sum. In this case, X = Y + Z where Y,Z
are two identical random variables of the kind from the previous bullet point.

• We toss 1000 fair coins. Z takes the value of the number of heads we see.

• Given any event E , there is an associated random variable called the indicator random
variable denoted as 1E , where 1E(ω) = 1 if ω ∈ E , and 0 otherwise.

2. Events associated with random variables.

Given a random variable X , we can associate many events and ask for their probabili-
ties. For instance, we can ask Pr[X = x]. More precisely, this is a shorthand for saying
∑ω∈Ω∶X(ω)=xPr[ω].
Similarly, Pr[X ≥ k] is a shorthand for saying ∑ω∈Ω∶X(ω)≥kPr[ω].

3. “Shape” of a Random Variable.

SinceX is real valued (or integer valued), one can plot how the Pr[X = x] looks like with re-
spect to X . The following plots show a couple of examples. The first set of figures (Figure 1)
is related to dice. We roll N dice, each independent of one another, and we use X to denote
the sum of the numbers seen. The plots show how Pr[X = x] changes with x, as x goes from
0 to 6N + 1. As you can see, when N = 1, the probabilities are the same for each number, and
equals 1/6th. However, the distribution becomes less and less uniform as N grows.
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Figure 1: The above graphs plot the probability of seeing a particular sum on the Y-axis against the possible
sums on the X-axis. From left to right, the number of dice is 1,2,3 and 100.

The next set of figures (Figure 2) relate to coin tosses. We toss N coins and Z denotes the
number of heads we see. The plots in blue (the ones to the left) are the plots of tosses of fair
coins which turn up heads 50-50. The plots in green (the ones to the right) are for biased
coins which come up heads with probability 0.3.

Figure 2: The above graphs plot the probability of seeing a particular number of heads on the Y-axis against
the reals on the X-axis. The first two figures (in blue) on the left are for fair coins, withN = 100 coins tossed
and N = 1000 coins tossed. The two figures in the right (in green) are for biased coins which come heads
with 0.3 probability. The number of coins are N = 100 and N = 1000 respectively.

Remark: A few points are noteworthy

• Note the shapes become “narrower” as the number of coins/dice grow.

• Note that the shape of fair coin is similar to the shape of biased coins with just a shift.

• Note that the 100 dice shape looks quite similar to the shape with 1000 coins.

All of these happen for a very important reason (which we will not cover, unfortunately). The
reason, informally, states that if we take many, many independent copies of the same random
variable (dice, coin, whatever), and add them all up, their shape (or “distribution” more formally)
all tend to look the same (like a bell curve). This unifying shape is called the “normal distribution”
or the “Gaussian distribution”.

4. Expectation of a Random Variable.

The expectation of a random variable X is defined to be

Exp[X] = ∑
ω∈Ω

X(ω) ⋅Pr[ω] = ∑
x∈range(X)

x ⋅Pr[X = x]
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Remark: Do you see why the second summation equals the first summation? Here is how:

∑
x∈range(X)

x ⋅Pr[X = x] = ∑
x∈range(X)

x ⋅
⎛
⎝ ∑
ω∈Ω∶X(ω)=x

Pr[ω]
⎞
⎠

by definition of Pr[X = x]

= ∑
ω∈Ω

Pr[ω] ⋅ ∑
x∶X(ω)=x

x A swap of summations

= ∑
ω∈Ω

Pr[ω] ⋅X(ω) There is only one x which X(ω) evaluates to

I hope this didn’t confuse you more ...

Remark: The expectation is therefore often thought of as an inner-product (aka dot-product) of
two vectors. These vectors have ∣Ω∣ dimensions. One vector is (X(ω) ∶ ω ∈ Ω), and the other
is (Pr[ω] ∶ ω ∈ Ω). This dot-product view is often useful (although, sadly, we may not see its
ramifications in this course).

Examples:

• We toss a fair coin. X(heads) = 0 and X(tails) = 1. This is a {0,1}-random variable, or a
Boolean random variable. Also called a Bernoulli random variable.

Exp[X] = 0 ⋅Pr[X = 0] + 1 ⋅Pr[X = 1] = 1/2
Indeed, if the coin were not fair, and the probability that tails would come with proba-
bility p, then Exp[X] = p.

• We roll a fair die. X takes the value on the face of the die.

Exp[X] = 1 ⋅ 1

6
+ 2 ⋅ 1

6
+ 3 ⋅ 1

6
+ 4 ⋅ 1

6
+ 5 ⋅ 1

6
+ 6 ⋅ 1

6
= 3.5

• We roll two fair dice. X takes the value of the sum. In this case, X = Y + Z where Y,Z are
random variables of the kind from the previous bullet point.
This is requires a little work. The range of X is {2,3,4,5,6,7,8,9,10,11,12}. We can
calculate the probabilities for each (remember, it is not uniform), and then do the calcu-
lation. b

Exercise: Please do the calculation.

We get the answer 7. Did you?
• We toss a fair coin 100 times. Z is the number of heads.

This is a lot more work. First, we observe the range(Z) = {0,1,2, . . . ,100}. Then, we try
to figure out Pr[Z = k]. This is 1

2100
⋅ (100

k
). (Do you see how? There are 2100 possible

outcomes, each equally likely coz the coins are fair, and (100
k
) have exactly k heads.).

Therefore,

Exp[Z] =
100

∑
k=0

k ⋅ (100

k
) ⋅ 1

2100

Phew!
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• Given any event E , there is an associated random variable called the indicator random vari-
able denoted as 1E , where 1E(ω) = 1 if ω ∈ E , and 0 otherwise.

Exp[1E] = 0 ⋅Pr[¬E] + 1 ⋅Pr[E] = Pr[E]

This is quite important. Why? Because it turns a probability calculation (the RHS) into
an expectation calculation. As we show below, calculating expectations is often easier
than calculating probabilities. b

Exercise: Suppose you have a fair coin. Construct the following random variable Z whose range
is N. You keep tossing the fair coin till you get a heads. Z is the number of times you have tossed
the coin. What is Exp[Z]? To do this, figure out what is Pr[Z = k]. Then write the expectation
as a sum. Then see if you can simplify the sum.

5. Multiplication by a scalar. If X is a random variable, and c is a “scalar” (a constant), then
Z = c ⋅X is another random variable. Exp[c ⋅X] = c ⋅Exp[X]. b

Exercise: Prove this.

6. Linearity of Expectation. This is one of the most powerful equations in all of probability.
Literally. It states the following. It literally has a four line proof.

Theorem 1. For any two random variables X and Y , let Z ∶=X + Y . Then,

Exp[Z] = Exp[X] +Exp[Y ]

Proof.

Exp[Z] = ∑
ω∈Ω

Z(ω)Pr[ω] Definition of Expectation

= ∑
ω∈Ω

(X(ω) + Y (ω))Pr[ω] Definition of Z

= ∑
ω∈Ω

X(ω)Pr[ω] + ∑
ω∈Ω

Y (ω) ⋅Pr[ω] Distributivity

= Exp[X] +Exp[Y ] Definition of Expectation

As a corollary, we get:

Theorem 2. For any k random variables X1,X2, . . . ,Xk,

Exp [
k

∑
i=1

Xi] =
k

∑
i=1

Exp[Xi]

Examples of applications.
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(a) We roll two fair dice. X takes the value of the sum. In this case, X = Y + Z where Y,Z are
random variables of the kind from the previous bullet point.
Tailor-made application. Exp[Y ] = Exp[Z] = 3.5, the expected value of a single roll of
a die. Thus, Exp[X] = Exp[Y +Z] = 7 by linearity of expectation.

(b) We have a biased coin which lands heads with probability p. We toss it 100 times. Let Z be the
number of heads we see. What is Exp[Z]? Note that earlier we had the question for p = 0.5.

Remark: Try doing this the “first-principle” way. That is, for each 0 ≤ k ≤ 100, figure
out the probability Pr[X = k] (that is, the probability we get exactly k heads), and then
sum ∑100

k=0 k ⋅Pr[X = k]. Please try it; feel the sweat needed to do this. It will make you
appreciate the next three lines more!

Define new random variables; define Xi to take the value 1 if the ith toss is heads, and
0 otherwise. Note, X =X1 +X2 +⋯+X100. Note, Exp[Xi] = p (it is a Bernoulli random
variable). Thus, linearity of expectation gives Exp[X] = 100p.

(c) n people checked in their hats, but on their way out, were handed back hats randomly. What is
the expected number of people who get their correct hats?
Define Xi to be 1 if the ith person gets his or her back correctly. What is Exp[Xi]? It is
1/n; it is the probability that σ(i) = i for a random ordering σ. This question was there
in the UGP. Let Z = ∑n

i=1Xi. Note, Z is the number of people who get their correct hats.
By linearity of expectation, Exp[Z] = 1.

(d) In a party of n people there are some pairs of people who are friends, and some pairs who are not.
In all there are m pairs of friends. The host randomly divides the party by taking each person
and sending them left or right at the toss of a fair coin. How many friends, in expectation, are
sundered apart?

Remark: In terms of graphs (which we will see soon) the question is: a graph with m
edges is randomly partitioned. How many edges, in expectation, have endpoints in different
parts?

For each pair of friends (u, v), define Xuv which takes the value 1 if u and v are split,
and takes the value 0 if u and v are not split. The probability u and v are split is 1/2
(either u is sent left, v is sent right, or vice-versa – do you see this?). Thus, Exp[Xuv] =
1/2. Define Z = ∑(u,v)∶ friendsXuv; Z is the number of friends sent apart. Exp[Z] =
∑(u,v)∶ friends Exp[Xuv] =m/2. In expectation, half the friendships are sundered apart.

(e) In an ordering σ of (1,2, . . . , n), an inversion is a pair i < j such that σ(i) > σ(j). How many
inversions, in expectation, are there in a random permutation?
Let σ be a random permutation. Define the indicator random variable Xij for i < j,
which takes the value 1 if σ(i) > σ(j), and 0 otherwise. Note that Pr[Xij = 1] = 1

2 ;
there are equally many orderings with σ(i) > σ(j) as σ(i) < σ(j). Now note that Z =
∑n

i=1∑j>iXij is the number of inversions in σ. Thus, Exp[Z] = ∑n
i=1∑j>nExp[Xij] =

1
2 ⋅

n(n−1)
2 .
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7. Independent Random Variables. Two random variables X and Y are independent, if for
any x ∈ range(X) and any y ∈ range(Y ),

Pr[X = x,Y = y] = Pr[X = x] ⋅Pr[Y = y]

Examples:

• If we roll two dice, and X1 and X2 indicate the value of the rolls, then X1 and X2 are
independent.

• If we have two independent events A and B, then their indicator random variables 1A
and 1B are independent.

• Consider a random variable X taking value +1 if a toss of a coins is head, and −1 if its
tails. Such random variables are called Rademacher random variables. Suppose we toss
the coin twice and X1 and X2 are the corresponding random variables. Then X1 and
X2 are independent.

A set of k random variables X1, . . . ,Xk are mutually independent if for any x1, x2, . . . , xk with
xi ∈ range(Xi), we have

Pr[X1 = x1,X2 = x2, . . . ,Xk = xk] =
k

∏
i=1

Pr[Xi = xi]

Theorem 3. If X and Y are two independent random variables, then

Exp[XY ] = Exp[X] ⋅Exp[Y ]

Proof.

Exp[XY ] = ∑
x∈range(x),y∈range(y)

(xy) ⋅Pr[X = x,Y = y] Definition of Expectation

= ∑
x∈range(x),y∈range(y)

(xy) ⋅Pr[X = x] ⋅Pr[Y = y] Independence

=
⎛
⎝ ∑
x∈range(x)

x ⋅Pr[X = x]
⎞
⎠
⋅
⎛
⎝ ∑
y∈range(y)

y ⋅Pr[Y = y]
⎞
⎠

Algebra

= Exp[X] ⋅Exp[Y ] Definition of Expectation

Of course, there is no need to stick to two random variables. The theorem easily generalizes
(do you see how?) to mutually independent random variables as follows.
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Theorem 4. If X1,X2, . . . ,Xk are mutually independent random variables, then

Exp [
k

∏
i=1

Xi] =
k

∏
i=1

Exp [Xi]

Examples.

• Let Xi and Xj be two independent Rademacher random variables. Recall, Xi takes +1
with probability 1/2 and −1 with probability 1/2. Then note (a) Exp[Xi] = Exp[Xj] = 0,
(b) Exp[Xi ⋅Xi] = Exp[Xj ⋅Xj] = 1, and (c) Exp[XiXj] = Exp[Xi] ⋅Exp[Xj] = 0. This
is a very useful fact.

• Consider rolling a die n times, independently. Let Z be the random variable indicating
the product of all the numbers seen. What is Exp[Z]? To solve this, let Xi be the roll of
the ith die. We know that Exp[Xi] = 3.5 for all i. We also know X1,X2, . . . ,Xn are all
independent random variables. Thus, Exp[Z] = (3.5)n.

8. Variance and Standard Deviation.

The expectation of a random variable is some sort of an “average behavior” of a random
variable. However, the true value of a random variable may be no where close to the ex-
pectation. For instance, consider a random variable which takes the value 10000 with prob-
ability 1/2, and −10000 with probability 1/2. What is Exp[X]? Yes, it is 0. Thus, there is
significant deviation of X from its expectation.

The variance and standard deviation try to capture this deviation. In particular, the variance
of a random variable is the expected value of the square of the deviation.

Let X be a random variable. The variance of X is defined to be

Var[X] ∶= Exp [(X −Exp[X])2]

That is, if we define another random variable D ∶= (X −Exp[X])2, then Var[X] is the
expected value of this new deviation random variable D.

The standard deviation σ(X) is defined to be
√
Var(X).

Theorem 5. Var[X] = Exp[X2] − (Exp[X])2.

Proof.

Var[X] = Exp[(X −Exp[X])2] = Exp[X2 − 2XExp[X] + (Exp[X])2]

Then, we apply linearity of expectation to get

Var[X] = Exp[X2] − 2Exp[X] ⋅Exp[X] + (Exp[X])2 = Exp[X2] − (Exp[X])2

A useful corollary:
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Theorem 6. For any random variable Exp[X2] ≥ (Exp[X])2.

Proof. Var[X] is the expected value of (X−Exp[X])2. That is, Var[X] is the expected value
of a random variable which is always non-negative. In particular, Var[X] is non-negative.
Which in turn means Exp[X2] − (Exp[X])2 ≥ 0. Rearranging implies the corollary.

Examples

• Roll of a die. Let X be the roll of a fair 6-sided die. We know that Exp[X] = 3.5. To
calculate the variance, we can use the deviation D ∶= (X − Exp[X])2 = (X − 3.5)2.
Usinhg this, we get

Var[X] = Exp[D] = 1

6
((2.5)2 + (1.5)2 + (0.5)2 + (0.5)2 + (1.5)2 + (2.5)2) = 35

12

• Toss of a biased coin. Let X be a Bernoulli random variable taking value 1 if a coin tosses
heads, and 0 otherwise. Suppose the probability of heads was p. Recall, Exp[X] = p.
Also note since X is a indicator random variable, X2 = X . Thus, Exp[X2] = p as well.
We can calculate the variance as

Var[X] = Exp[X2] − (Exp[X])2 = p − p2 = p(1 − p)

• Indicator Random Variable. Using the above toss of a biased coin example, we see that
for any event E , the variance of the indicator random variable is

Var[1E] = Pr[E] ⋅ (1 −Pr[E])

Theorem 7. If X is a random variable, and c is a “scalar” (a constant), then Z = c ⋅X is
another random variable. Var[c ⋅X] = c2 ⋅Var[X].

Proof.

Var[c ⋅X] = Exp[c2X2] − (Exp[cX])2 = c2Exp[X2] − c2 (Exp[X])2 = c⋅Var[X]

The next theorem is a linearity of variance result for independent random variables.

Theorem 8. For any two independent random variables X and Y , let Z ∶=X + Y . Then,

Var[Z] =Var[X] +Var[Y ]
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Proof.

Var[X + Y ] = Exp[(X + Y )2] − (Exp[X] +Exp[Y ])2

= Exp[X2 + 2XY + Y 2] − (Exp2[X] − 2Exp[X]Exp[Y ] +Exp2[Y ])
= (Exp[X2] −Exp2[X]) + (Exp[Y 2] −Exp2[Y ]) + 2 (Exp[XY ] −Exp[X]Exp[Y ])
= Var[X] +Var[Y ]

In the last equality, due to independence, we get that 2 (Exp[XY ] −Exp[X]Exp[Y ]) =
0.

We can generalize the above proof to many random variables. In particular, we can say
that if X1,X2, . . . ,Xk are mutually independent random variables, then the variance of the
sum is the sum of the variances. However, we don’t need mutual independence. Pairwise
independence suffices. The proof is given as a solution to the UGP; perhaps you can try it.
There is nothing more than the algebra above except there are k things adding up.

Theorem 9. For any k pairwise independent (and therefore also for mutually indepen-
dent) random variables X1,X2, . . . ,Xk,

Var [
k

∑
i=1

Xi] =
k

∑
i=1

Var[Xi]

9. Deviation Inequalities

We have seen an example that Exp[X] may not be anywhere close to what values X can
take (recall the X = 10000 with 0.5 probability and −10000 with 0.5 probability). Deviation
inequalities try to put an upper bound on the probability that a random walk deviates too far
from the expectation.

The mother of all deviation inequalities is the following:

Theorem 10. (Markov’s Inequality)

Let X be a random variable whose range is non-negative reals. Then for any t > 0, we
have

Pr[X ≥ t] ≤ Exp[X]
t

Proof. By definition of expectation, we have

Exp[X] = ∑
x∈range(X)

x ⋅Pr[X = x] = ∑
0≤x<t

x ⋅Pr[X = x] + ∑
x≥t
x ⋅Pr[X = x]

The first summation ∑0≤x<t x ⋅ Pr[X = x] ≥ 0. All terms are non-negative. The second
summation is ∑x≥t x ⋅Pr[X = x] ≥ t ⋅ ∑x≥tPr[X = x] = t ⋅Pr[X ≥ t].
Putting it all together, we get

Exp[X] ≥ t ⋅Pr[X ≥ t]
which gives what we want by rearrangement.
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Markov’s inequality only talks about non-negative random variables. Indeed, the example
in the beginning of this bullet point shows that it cannot be true for general random vari-
ables. This is where variance comes to play. The following is one of the most general forms
of deviation inequalities.

Theorem 11. (Chebyshev’s Inequality)

Let X be a random variable. Then for any t > 0, we have

Pr[∣X −Exp[X]∣ ≥ t] ≤ Var[X]
t2

Proof. We first note that

Pr[∣X −Exp[X]∣ ≥ t] = Pr[(X −Exp[X])2 ≥ t2]

Then we notice that D ∶= (X −Exp[X])2 is a non-negative random variable, and therefore
we can apply Markov’s inequality on it to get

Pr[∣X −Exp[X]∣ ≥ t] = Pr[D ≥ t2] ≤ Exp[D]
t2

= Var[X]
t2

Theorem 12. A useful corollary to the above, and one which is often used as rule of
thumb, is obtained by setting t = cσ(X) for some c ≥ 0. One gets,

Pr[∣X −Exp[X]∣ ≥ cσ(X)] ≤ 1

c2

Proof. When t = cσ(X) is substituted in Chebyshev’s inequality, one gets the RHS in the
above corollary by reminding oneself that σ(X) =

√
Var(X).

Example

• Suppose we toss 1000 fair coins. What are the chances that we see more than 600 heads?
In this case, let Z be the random variable which evaluates to the number of heads seen
in the toss of 1000 coins. We are interested in the question

Pr[Z ≥ 600]?

To evaluate this, we define random variables X1,X2, . . . ,X1000, where Xi is the indica-
tor random variable for the ith toss; that is, it is defined to be 1 if the ith toss is heads,
and it is defined to be 0 if the ith toss is tails. We observe four crucial things:

– Z =X1 +X2 +⋯ +X1000.
– Exp[Xi] = 0.5 for all 1 ≤ i ≤ 1000. This is because the coins are fair.
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– X1,X2, . . . ,X1000 are ( mutually) independent.
– Var[Xi] = 0.25 (see variance example above – with p = 0.5)

Linearity of expectation gives us

Exp[Z] =
1000

∑
i=1

Exp[Xi] = 1000 ⋅ 0.5 = 500

The fact that the Xi’s are (mutually) independent, allows us to use linearity of variance
(Theorem 9), to get

Var[Z] =
1000

∑
i=1

Var[Xi] = 1000 ⋅ 0.25 = 250

Finally, we can apply Chebyshev’s inequality as follows

Pr[Z ≥ 600] = Pr[Z − 500 ≥ 100] We have subtracted the expectation from both sides
≤ Pr[∣Z − 500∣ ≥ 100] if Z − 500 ≥ 100, surely the absolute value is.

≤ Var(Z)
1002

Chebyshev’s Inequality

= 1

40
Substituting Var[Z] = 250.

Thus, the chances we see more than 600 heads is at most 2.5%.

Remark: The true answer to the question of what is the probability we see more than 600 heads
is in fact much, much lower. The reason is that when a random variable can be written as a sum
of mutually independent random variables, then the rule of thumb for the deviations is

The probabilityX is more than c standard deviations away is of the order of e−c
2/2

The above statement is qualitative rather than quantitative (and therefore I use the term “order
of”). But one can see in the above coins example, the standard deviation is

√
250 ≈ 16. Thus

seeing more than 100 heads than the mean is being off by more than 6 standard deviations. The
chances of this is roughly e−62/2 which is roughly 1 in 100 million! Way smaller than 2.5%.

You should use a computer to check it out.

b

Exercise: Do the following exercises mimicking the above example.

• Suppose every email I get independently is spam with probability 1%. I receive 100 emails.
What is the probability that more than 7 of them are spam?

• Suppose I roll 100 normal dice, and add the sum up. What is the probability that the total
sum is less than 100?
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