
CS 30: Discrete Math in CS (Winter 2020): Lecture 25
Date: 24th February, 2020 (Monday)

Topic: Numbers: GCD and Bezout’s Identity
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. GCD and co-prime numbers. The greatest common divisor g = gcd(a, b) of two positive inte-
gers a and b is the largest integer g such that g perfectly divides both a and b. Two numbers
a and b are relatively prime or co-prime if gcd(a, b) = 1.

Examples:

• gcd(5,1) = 1. If one of the numbers is 1, then the gcd must be 1. No number larger than
1 divides it. And 1 divides every number.

• gcd(10,5) = 5. More generally, if b divides a, then gcd(a, b) = b. Why? Well, definitely
b divides both b and a. Can there by anything larger, say c, which divides b? No. Any
number c that divides b must be ≤ b.

• gcd(13,17) = 1. In general, the gcd(p, q) of two primes is 1. This is from the definition of
prime numbers. A number p is prime if 1 and p are its only factors.

• gcd(12,16) = 4. The “grade school” way of showing this (at least if I remember my
grade school) is to write 12 = 2 × 2 × 3 and 16 = 2 × 2 × 2 × 2. And the gcd is the product
of all the common things.

Remark: The above is a bad way to find, or even prove, GCDs because of two reasons
which are worth comprehending.

(a) First, it assumes the unique prime factorization theorem of numbers. That is, 12
can be written as the product of 2 ⋅ 2 ⋅ 3, and that there is no other way of doing so.
Because, imagine if both 12 and 16 did have different ways of being written, and in
one way 8 came out as a common divisor! Well one cannot quite assume the unique
factorization theorem, for that actually needs stuff building on what we will do in class
today (we won’t cover unique factorization in this course though). So, using unique
factorization is circular.

(b) Second, even if you assume unique factorization (which you cannot for reason men-
tioned above), we simply don’t know how to factor numbers easily. Sure 12 and 16
are fine. But can you factor 1194649 in your head? Or a 100 digit number in your
computer? We just don’t know how!

So, the gcd concept is not as trivial. Given two numbers a and b, unless one divides the other,
how do we actually find the gcd? Today’s class will tell us (a) a way to do so, and (b) also a
quick way to certify a GCD. Certify as in the Prover-Verifier model we had talked about for
bipartite graphs and L-matchings. All this is more than 2000 years old!!

2. Key Property of GCD. Here is what Euclid noticed.
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Theorem 1 (GCD property). Given any two positive numbers a, b with say b ≤ a, let r be
the remainder upon dividing a by b. That is, a = bq + r for some 0 ≤ r < b. If r = 0, then
gcd(a, b) = b. Otherwise, gcd(a, b) = gcd(b, r).

Proof. We already notices the r = 0 case. To repeat, if r = 0 then b divides a, b clearly divides
b, and there is no larger number that divides b. Thus, gcd(a, b) = b.

Otherwise, let g = gcd(a, b) and h = gcd(b, r). Since g divides a and g divides b, and therefore,
divides bq, we get g divides r = a − bq. Thus, gcd(b, r) ≥ g since the GCD is the largest
integer dividing both b and r. Since h divides b and h divides r, h divides a = bq + r. Thus,
gcd(a, b) ≥ h. Thus, g = h.

Example. So, using Theorem 1, we can make progress on gcd(16,12). 12 doesn’t divide 16,
but rather 16 mod 12 = 4. Thus, the above theorem gives us gcd(16,12) = gcd(12,4). But
now, 4 does divide 12, and so gcd(12,4) = 4. Indeed, gcd(16,12) = 4 (as our grade-school
had predicted.)

3. Euclid’s Recursive Algorithm for GCD. Indeed, the above example is an illustration of a
recursive algorithm to obtain the GCD of a and b.

1: procedure GCD(a, b) ▷ Assume a ≥ b.
2: ▷ Returns the GCD of a and b.
3: Divide a by b to get a = bq + r.
4: if r = 0 then:
5: return b
6: else:
7: return GCD(b, r)

Example. Let us run this with a different set of numbers; say 25 and 15.

GCD(25,15) 25 = 15 ⋅ 1 + 10 q = 1, r = 10 calls
GCD(15,10) 15 = 10 ⋅ 1 + 5 q = 1, r = 5 calls
GCD(10,5) 10 = 2 ⋅ 5 + 0 q = 2, r = 0 recursion stops, returns 5.

Why does the above algorithm terminate? Well, in each recursive call, the smaller number
passed on to GCD is strictly becoming smaller. Do you see why? Yes, because the remainder
is always smaller than the divisor; r < b. Furthermore, when the smaller number becomes 1,
we know that the algorithm will stop. So it will at least stop in some finite time.

In fact, the above algorithm is pretty darn fast. And we analyze it completely in CS31! b

Exercise: Code the above algorithm in your favorite language, and then pass on 100 digit num-
bers to it and marvel. PS: If you are using Python, set the max recursion depth limit though. If
you don’t know what that meant, Google it.
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4. Integer Linear Combinations and Bezout’s Identity. We now come to a quite fascinating
identity which will form the heart of most things we are going to say in this module. It
has all the characteristics of a beautiful theorem: it’s surprising (at least it was to me), it’s
extremely useful (see the UGP, for instance), and actually simple to prove (we have already
done almost all the work!).

Before we dive into the identity, let’s play a bit. Fix two natural numbers a and b. We then
consider all numbers that can be obtained by taking integer linear combinations of these num-
bers. That is, we consider the set1

L(a, b) ∶= {xa + yb ∶ x ∈ Z, y ∈ Z}

We observe that any number ` ∈ L(a, b)must be divisible by g = gcd(a, b). Why? Well, simply
because g divides both a and b. And thus, g divides xa+yb for any two integers x and y. The
question that probably arises in one is: are all multiples of g obtained? Clearly, the answer
to this is equivalent to whether g ∈ L(a, b)? If g ∈ L(a, b), that is, if x∗a + y∗b = g, then any
multiple kg of g is also in L(a, b) since (kx∗)a + (ky∗)b = kg. Is it possible g ∈ L(a, b)? The
answer is YES! This is what is called Bezout’s Identity (but Euclid knew of this too).

Theorem 2. (Bezout’s Identity)

For any two positive numbers a and b, there exists two integers x and y (not necessarily
positive) such that

xa + yb = gcd(a, b) (Bezout’s Identity)

Remark: I say “not necessarily positive” above, however, they both cannot be positive. For then
xa + yb is bigger than both a and b, while gcd(a, b) is at most a or b.

In English, Bezout’s identity says that given any two positive numbers a and b, there is a
integer linear combination of these numbers to get the GCD of the pair. And thus the set L(a, b)
are simply the multiples of g. In particular, if a and b are relatively prime, then L(a, b) = Z,
all integers. Thus,

Theorem 3. If a and b are relatively prime numbers, then for any integer z, there is a
solution (x, z) to the equation xa + yb = z.

Proof. Bezout’s identity says there exists x∗ and y∗ such that x∗a + y∗b = 1. Multiply by z to
get the solution x = x∗z and y = y∗z.

Before we go into the proof, let us see one application and one important corollary.

Claim 1. If g = gcd(a, b) and h is a common divisor of a and b, then h divides g.

Proof. Note the definition of g just implies h ≤ g. But Bezout’s identity immediately implies
this. Indeed, there is x, y with xa + yb = g. Since h divides a and b, it divides the LHS, and so
h divides g.

1such a set formed by integer combinations are called a lattice. Hence the letter L
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Theorem 4. Let a and b be two positive natural numbers. If there exist integers x, y such
that xa + yb = 1, then gcd(a, b) = 1. That is, a and b are relatively prime.

Proof. Let g ∶= gcd(a, b). Then since g divides a and b, g divides xa+yn. But the only number
which divides 1 is 1. Thus, g = 1.

Remark: Using the Prover-Verifier analogy once more. Suppose I have two very large numbers
a and b and the Prover tells me that they are relatively prime. They can now easily provide a
certificate by giving an x and a y such that xa + yb = 1.

For example, take a = 234234534535 and b = 42371897123. I can claim that they are relatively
prime, by asserting

15306622845 × a + (−84615981838) × b = 1

And you can verify this even with a calculator. Do it!

Remark: I also lost a lot of people on this theorem last time. So, pay attention, and ask questions.

Argument. Before we embark on the formal proof, let us look at a very simple case: when
one of the number divides the other. Suppose b divides a, and thus, gcd(a, b) = b. Are there
integers x, y such that xa + yb = gcd(a, b) = b? Sure! Set x = 0 and set y = 1.

Ok, now suppose b doesn’t divide a. Recall, this was precisely the case where we were “stuck”
with gcd as well. So, a = bq + r for some 0 < r < b. Well, what does Theorem 1 tell us? It tells
us gcd(a, b) = gcd(b, r). Let’s call this number g. But how does it help in finding the integers
x and y such that xa + yb = g?

Here comes the key insight. The pair (b, r) is “simpler” than the pair (a, b). More precisely,
the smaller number in the pair is strictly less. But their gcd’s are the same. So? So, induc-
tively, we can assume that there are integers u and v such that ub + vr = gcd(b, r) = g.

We wanted to write g as an integer combination of a and b. What we have achieved, by
induction, is that we have written it as an integer combination of b and r. How is that
useful? Well, what is r? r is also an integer combination of a and b’s, right. After all, a = bq+r
which implies r = a − bq (this was also used in Theorem 1 proof). And so, we can use this to
write g as an integer combination of a’s and b’s.

More precisely,

g = ub + vr ⇒ g = ub + v ⋅ (a − bq) ⇒ g = v ⋅ a + (u − vq) ⋅ b

To sum up, if we inductively/recursively solve the problem on (b, r) to write g = gcd(b, r) as
a integer combination of b and r as gcd(b, r) = ub + vr, then we can obtain an integer linear
combination of gcd(a, b) as xa + yb by setting x = v and y = u − vq where q was the quotient
when a was divided by b.

Example. Let’s take the numbers 25 and 15 for which we calculated the GCD of 5 above.
We see that in Step 1, we wrote 25 = 15 ⋅ 1 + 10, so the quotient q was 1 whole remainder
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r was 10. So, this means if some one gave us a way to write 5 = gcd(15,10) as a linear
combination of 15 and 10, and for instance one way is 5 = 15 ⋅ 1 + 10 ⋅ (−1) with u = 1 and
v = −1, then one can write 5 as a integer combination of 25 and 15 by setting x = v = −1, and
y = (u − vq) = (1 − (−1) ⋅ 1) = 2; indeed,

5 = (−1) ⋅ 25 + 2 ⋅ 15

Let me give the exact recursive code below which encapsulates the above argument, then
run with another example, then state a very important corollary of the theorem, and then
finally give two (really the same) formal proofs of the theorem. But by now you should be
able to formalize the proof as well.

1: procedure EXTGCD(a, b) ▷ Assume a ≥ b ≥ 0.
2: ▷ Returns the GCD of a and b. Also returns x, y such that xa + yb = gcd(a, b)
3: Divide a by b to get a = bq + r.
4: if r = 0 then:
5: return (b,0,1)
6: else:
7: Let (g, u, v) =EXTGCD(b, r).
8: return (g, v, u − vq)

Example Run, and how to write on paper. Let us actually run this algorithm for a = 17 and b = 12.

EXTGCD(17,12) 17 = 12 ⋅ 1 + 5 q1 = 1, r1 = 5 calls
EXTGCD(12,5) 12 = 5 ⋅ 2 + 1 q2 = 2, r2 = 2 calls
EXTGCD(5,2) 5 = 2 ⋅ 2 + 1 q3 = 2, r3 = 1 calls
EXTGCD(2,1) 2 = 1 ⋅ 2 + 0 r4 = 0 recursion stops
EXTGCD(2,1) returns x4 = 0, y4 = 1,gcd = 1 check: 0 ⋅ 2 + 1 ⋅ 1 = 1

EXTGCD(5,2) returns x3 = y4 = 1, y3 = (x4 − y4q3) = −2 check: 1 ⋅ 5 + (−2) ⋅ 2 = 1

EXTGCD(12,5) returns x2 = y3 = −2, y2 = (x3 − y3q2) = 5 check: (−2) ⋅ 12 + 5 ⋅ 5 = 1

EXTGCD(17,12) returns x1 = y2 = 5, y1 = (x2 − y2q1) = −7 check: (5) ⋅ 17 + (−7) ⋅ 12 = 1

Thus the final answer is (x1, y1, g) = (5,−7,1).

5. Formal proofs of Theorem 2.

Proof #1. We will actually prove the code EXTGCD works correctly (remember the lecture
one proving recursive codes correct?) We define the following predicate:

For any natural number b, P (b) is true if and only if for all pairs of natural numbers a ≥ b
EXTGCD(a, b) returns (g, x, y) such that (a) g = gcd(a, b), and (b) g = xa + yb.

Now note that if we prove ∀n ∈ N ∶ P (n) is true, then we would have proved the theorem.
We proceed by induction.
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Base Case: We first establish P (1) is true. If b = 1, then note that for any a ≥ b, b divides a.
Thus, we run Line 5, that is, we return (b,0,1) = (1,0,1). Indeed, the gcd is 1, and 1 = 0⋅a+1⋅1.
Therefore, the algorithm behaves correctly, and P (1) is established.

Inductive Case: Now fix a natural number k ≥ 2. Assume P (2), P (3), . . . , P (k) is true. We
intend to show P (k + 1) is true. That is, for any number a ≥ (k + 1), we intend to show that
EXTGCD(a, k + 1) behaves correctly. To this end, fix a natural number a ≥ k + 1.

Case 1: (k + 1) divides a. Note gcd(a, k + 1) = k + 1 in this case. The algorithm EXTGCD(a, b)
then runs Line 5 and returns (k + 1,0,1). Indeed, since (k + 1) = a ⋅ 0 + (k + 1) ⋅ 1, in this case
the behavior of EXTGCD(a, b) is correct.

Case 2: a = (k + 1)q + r and 0 < r ≤ k. From Theorem 1, we know gcd(a, k + 1) = gcd(k + 1, r).
The algorithm EXTGCD(a, k + 1) now proceeds to Line 7. In particular, it obtains (g, u, v) by
calling EXTGCD(k + 1, r). Now note, r ≤ k. Since P (r) is true we get

• g = gcd(k + 1, r) (I1)
• g = u(k + 1) + vr (I2)

The algorithm then returns (in Line 8) (g, v, u− vq). We need to show this is correct behavior.
That is, we

• Need to show g = gcd(a, k + 1).
Indeed, this follows from the fact that gcd(a, k + 1) = gcd(k + 1, r) and (I1).

• Need to show g = va + (u − vq) ⋅ (k + 1).
Indeed, this is true since the RHS is u(k + 1) + v(a − (k + 1)q). Since a = (k + 1)q + r, we get
r = a − (k + 1)q, and thus, we get u(k + 1) + vr which equals g from (I2).

Therefore, we have proved P (k + 1). And therefore, by strong induction, the correctness of
EXTGCD is established.

Proof #2. We now give a proof of Theorem 2 using the “minimal counterexample idea.”
As mentioned earlier in the course, it is the same as the induction idea, said in a different
language.

Suppose, for contradiction’s sake, there exists positive numbers a, b such that for no two
integers x, y, do we have xa + yb = gcd(a, b). Among all such counterexample pairs (a, b), let
us pick a pair with the smallest sum min(a, b). That is, the smaller number in this pair is as
small as possible.

Given this minimal counterexample (a, b), without loss of generality assume a ≥ b (otherwise
swap names). Let us divide a by b to get a = bq + r for some 0 ≤ r < b.

Suppose r = 0. That is, b divides a. Therefore, gcd(a, b) = b and since 0 ⋅ a + 1 ⋅ b = b, we see
that (a, b) cannot be a counterexample. Therefore, r ≠ 0.

By Theorem 1 we know that gcd(a, b) = gcd(b, r). Furthermore, r = min(b, r) < b = min(a, b).
Therefore, the two positive numbers (b, r) cannot be a counterexample to (Bezout’s Identity)
since (a, b) was the minimal counterexample. Which implies there exists integers x′ and y′

such that
x′b + y′r = gcd(b, r) = g
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However, r = a − bq. Substituting above, we get

x′b + y′(a − bq) = g ⇒ y′a + (x′ − y′q)b = g

Thus, the integers x = y′ and y = (x′ − y′q) satisfy xa + yb = g = gcd(a, b). That is, (a, b) is not
a counterexample. Contradiction.
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