1 Basics

- **Definition.** A set is an *unordered* collection of *distinct* objects. These objects are called *elements* of the set. These elements could be *anything*, for instance, the element of a set could be a number, could be a string, could be tuples of numbers, and in fact can be other sets!
- Roster Notation. A set can be described by explicitly writing down the elements, such as

$$S = \{1, 3, 5, 7, 9\} \quad \text{or} \quad T = \{\text{apple, banana, volcano}, 100\} \quad \text{or} \quad W = \{S, T\}$$

This is called the *roster notation*. Note that the *elements* of the set W are the sets S and T.

- The \in and \notin notation. We use the notation "element" \in "set" to indicate that the "element" is in the "set". We use \notin to denote that the element is not in the set. In the above example, $3 \in S$ and apple $\in T$ and $S \in W$. But be wary : $3 \notin W$. When figuring out if an element is in a set, we don't "keep opening" the sets inside.
- **Set Builder Notation.** A set can also be described *implicitly* by stating some rule which the elements follow. For example,

```
S = \{n : n \text{ is a positive odd integer less than } 10\} or V = \{x^2 : x \text{ is an integer and } 1 \le x \le 5\}
```

This is called the *set-builder notation*.

The sets S described in the above two examples correspond to the same set. The set V, written explicitly in the roster notation, is $V = \{1, 4, 9, 16, 25\}$.

Remark: Caution: Unless otherwise explicitly mentioned, duplicate items are removed from a set. For example, consider the set $A = \{x^2 : -2 \le x \le 2\}$ in the set-builder notation. In the roster notation, this set is $\{0,1,4\}$ and **not** $\{4,1,0,1,4\}$.

• Cardinality of a set. The *cardinality* of a set S is denoted as |S| is the number of elements in the set. For example if $A = \{\text{apple, banana, avocado}\}$, then |A| = 3.

```
Exercise: What is |A| when A = \{x^2 : -3 \le x \le 3, x \in \mathbb{Z}\}?
```

If the set S has only finitely many elements, then |S| is a finite number, and S is called a *finite* set. |S| could be ∞ in which case the set is called an infinite set.

• Famous examples of Infinite Sets. \mathbb{N} , the set of all natural numbers; \mathbb{Z} , the set of all integers; \mathbb{Q} , the set of all rational numbers, \mathbb{R} , the set of all real numbers; and \mathbb{P} , the set of all computer programs written in Python. This course will mostly talk about finite sets. We will visit infinite sets (perhaps) in the very end of this course.

¹Lecture notes by Deeparnab Chakrabarty. Last modified: 16th Jun, 2024

These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at deeparnab@dartmouth.edu. Highly appreciated!

- **Empty Set.** There is only one set which contains no elements and that set is called the *empty set* or sometimes the *null set*. It is denoted as \emptyset or $\{\}$.
- Subsets and Supersets. A subset P of a set S is another set such that every element of P is an element of S. In that case, the notation used is $P \subset S$ or $P \subseteq S$. Note that $S \subseteq S$ as well, that is, a set is always a subset of itself. In case P is a subset and not equal to S, it is called a proper subset. It is denoted as $P \subseteq S$.

For example, if $A = \{1, 2, 3\}$ and $B = \{1, 2\}$, then $B \subseteq A$.

Remark: The empty set \emptyset is a subset of all sets. This is a convention.

If $A \subset B$, then B is called a *superset* of A. This is denoted as $B \supset A$.

• Power Set. Given any set S, the power set $\mathcal{P}(S)$ is the set of all subsets of the set S. It is a set of sets. Note by the above convention, for any set S, the empty set $\emptyset \subseteq S$ and therefore, $\emptyset \in \mathcal{P}(S)$.

Exercise: Write down all subsets of the sets $S = \{1, 2\}$, $T = \{1, 2, 3\}$ and $U = \{1, 2, 3, 4\}$. Do you see a pattern in the number of subsets?

2 Set Operations.

• Union. Given two sets A and B, the union $A \cup B$ is the set containing all elements which are either in A, or in B, or both. For example, if

$$A = \{1, 3, 4, 7, 10\}$$
 and $B = \{2, 4, 7, 9, 10\}$, then $A \cup B = \{1, 2, 3, 4, 7, 9, 10\}$

• Intersection. Given two sets A and B, the intersection $A \cap B$ is the set containing all elements which are in both in A and in B. For example, if

$$A = \{1, 3, 4, 7, 10\}$$
 and $B = \{2, 4, 7, 9, 10\}$, then $A \cap B = \{4, 7, 10\}$

Two sets A and B are called <u>disjoint</u> if $A \cap B = \emptyset$.

Remark: By definition, \cup and \cap are commutative: that is $A \cup B = B \cup A$ and $A \cap B = B \cap A$.

• **Difference.** Given two sets A and B, the set difference $A \setminus B$ are all the elements in A which are not in B and $B \setminus A$ are the elements in B which are not in A. For example, if

$$A = \{1, 3, 4, 7, 10\}$$
 and $B = \{2, 4, 7, 9, 10\}$, then $A \setminus B = \{1, 3\}$ and $B \setminus A = \{2, 9\}$

Exercise: Is \setminus operator commutative? Can it ever be that $A \setminus B = B \setminus A$ for any two sets A and B?

• Cartesian Product.

Given any two sets A and B, the Cartesian product $A \times B$ is another set whose elements are tuples (that is, ordered pairs) whose first entry comes from A and the second entry comes from B. Therefore, in the set-builder notation

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$$

For example, if $A = \{1, 2, 3\}$ and $B = \{a, b\}$, then

$$A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}\$$

Remark: Note that $A \times B$ is in general not equal to $B \times A$. In particular, in the above example, the elements of $B \times A$ are $\{(a,1),(b,1),(a,2),(b,2),(a,3),(b,3)\}$. The element (a,1) is not the same as (1,a) for the order matters. A tuple is **not** a set.

Exercise: Can you figure out the cardinality of $|A \times B|$ in terms of |A| and |B|?

• Associativity. We can apply \cup s and \cap s with three or more sets. For instance, given three sets A, B, C, the set $A \cup B \cup C$ is the set $(A \cup B) \cup C$. The associativity property means that it's the same as $A \cup (B \cup C)$ and along with commutativity, it's the same as $(C \cup A) \cup B$. The order of which sets are union-ed first doesn't matter. Similar to addition. Indeed, $A \cup B \cup C$ is the set of all elements which are either in A or in B or in C.

The same is true for \cap -operator as well. The set $A \cap B \cap C$ is the set of elements which are common to all three sets.

Remark: The set-difference operator, however, is **not** associative. So, if you see the expression $A \setminus B \setminus C$, then you would have to ask for clarification: is it $A \setminus (B \setminus C)$ or is it $(A \setminus B) \setminus C$. These are two different sets. In particular, the first set can contain elements in $A \cap C$ which aren't in B, while the latter doesn't. The same also holds for the normal minus sign: (5-3)-2 and 5-(3-2) are different numbers. However, unlike arithmetic, there is no agreed upon convention of which one $A \setminus B \setminus C$ means.

• Distributive Property When we have both operators, union and intersection, then the order in which we take them matters. Therefore, the expression A ∪ B ∩ C is ill-defined. This is because, in general, (A ∪ B) ∩ C and A ∪ (B ∩ C) are two different sets. This is similar to the relation between + and ×: (2 + 3) × 4 and 2 + (3 × 4) are different. And unlike arithmetic symbols, there is no accepted convention like PEDMAS/BODMAS which clarifies which takes precedence. So, please be careful and put parentheses.

Exercise: Is there any relation between $(A \cup B) \cap C$ and $A \cup (B \cap C)$? Is one subset of the other?

Just like + and \times , the \cup and \cap satisfies the following distributive property.

Theorem 1. For any three sets A, B, C, we have

- (a) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.
- (b) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$.

Proof. We prove (a) and leave (b) as an exercise.

To show equality of two sets, we need to show two things. For every x in the LHS set, we need to show it lies in the RHS set. And vice-versa.

Pick any $x \in (A \cup B) \cap C$. Therefore, $x \in C$ and $x \in A$ or $x \in B$. If $x \in A$, then since $x \in C$, we have $x \in A \cap C$, and therefore x is in the RHS set. If $x \in B$, then a similar argument shows $x \in B \cap C$ and therefore x is in the RHS set.

Now the vice-versa. Pick any $x \in (A \cap C) \cup (B \cap C)$. x is either in $A \cap C$ or in $B \cap C$. Suppose $x \in A \cap C$. Then, $x \in A$ which implies $x \in A \cup B$, and therefore, since $x \in C$, we have $x \in (A \cup B) \cap C$. The other possibility, that is if $x \in B \cap C$ also symmetrically implies $x \in (A \cup B) \cap C$.

Exercise: True or False: If A and B are disjoint sets, and $C \subset A$, then are C and B disjoint?

Remark: Some useful observations:

- a. A and $B \setminus A$ are disjoint since $B \setminus A$ doesn't contain elements of A.
- b. In particular, this implies $(A \cap B)$ and $B \setminus A$ are disjoint since $A \cap B \subseteq A$.
- c. $A \cup (B \setminus A) = A \cup B$. This is because every element of $A \cup B$ is either in A, and if not in A, must be in $B \setminus A$.
- d. $(A \cap B) \cup (B \setminus A) = B$. This is because every element of B is either in A (in which case it is in $A \cap B$) or in $B \setminus A$.

3 Baby Inclusion-Exclusion

- We now meet the first non-trivial (but simple) statement in the course. It is the "baby" inclusion-exclusion identity/equation/formula. It is "baby" because we will meet the grown-up version later in the course. But the baby is strong enough for many things.
- Before we go to the inclusion-exclusion, we start with a simpler but key claim.

Claim 1. If A and B are two disjoint finite sets, then $|A \cup B| = |A| + |B|$.

Proof. Since A and B are finite, they have well-defined cardinalities which are non-negative integers. Let |A| = k and let $|B| = \ell$; note that these can be 0.

We are now going to *name* the elements of our sets. This will be very helpful in our reasoning. Indeed naming objects is a key thing to learn in this course. There is fantastic power in this simple sounding step. And so, to this end, let $A = \{a_1, a_2, \dots, a_k\}$ and let $B = \{b_1, b_2, \dots, b_\ell\}$. Note that if either k

or ℓ or both are 0, then the corresponding set would be $\{\}$ that is, the empty set \emptyset . So this notation is well defined.

Now for the key observation: since A and B are disjoint, we know that $a_i \neq b_j$ for any indices i and j. Therefore, $A \cup B = \{a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_\ell\}$ since it must contain all items of A and B. Thus, by inspection now, $|A \cup B| = k + \ell = |A| + |B|$.

Remark: We can extend claim 1 to multiple sets. A definition first. A collection of n sets, A_1, A_2, \ldots, A_n , are called **pairwise disjoint** if $A_i \cap A_j = \emptyset$ for all $i \neq j$. That is, any two different sets are disjoint. Then, one can extend the claim above with a similar proof to the following generalization. We give a different argument below which contains the main idea behind the "proof by induction" technique.

Claim 2. If A_1, A_2, \ldots, A_n are pairwise disjoint finite sets, then $|A_1 \cup A_2 \cup \cdots \cup A_n| = \sum_{i=1}^n |A_i|$.

Proof. (Sketch) Let me show why the n=3 case holds. The idea is to think of $A_1 \cup A_2$ as one set and apply the claim above. Since $A_1 \cap A_3 = \emptyset$ and $A_2 \cap A_3 = \emptyset$, we have $(A_1 \cup A_2) \cap A_3 = \emptyset$. So,

$$|(A_1 \cup A_2) \cup A_3| = |A_1 \cup A_2| + |A_3|$$

And then since $A_1 \cap A_2 = \emptyset$, we get $|A_1 \cup A_2| = |A_1| + |A_2|$ which if we substitute above, we get $|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3|$. Do you now see how to generalize for a general n? \square

• Now we are ready for stating and proving the baby inclusion-exclusion theorem.

Theorem 2 (Baby Inclusion-Exclusion). For any two finite sets A and B, we have

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Proof. Since $A \cup B = A \cup (B \setminus A)$ and since A and $B \setminus A$ are disjoint, we get

$$|A \cup B| = |A| + |B \setminus A| \tag{1}$$

Since $B = (A \cap B) \cup (B \setminus A)$ and since $(A \cap B)$ and $B \setminus A)$ are disjoint, we get

$$|B| = |A \cap B| + |B \setminus A| \tag{2}$$

Subtracting (2) from (1), we get

$$|A \cup B| - |B| = |A| - |A \cap B|$$

The theorem follows by taking |B| to the other side.

Answers to exercises

- Note that $A = \{9, 4, 1, 0\}$, and thus the answer is 4. Although -3 and +3 are distinct, their squares are not, and in the set A they are counted only once.
- The set of subsets of S are $\{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$, and there are **four** of them. The set of subsets of T are

$$\{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$

and there are **eight** of them. I will let you write all the subsets of U. Do you see the pattern now?

- True. If A and B are disjoint, then no element of A is present in B. Since C is a subset of A, no element of C is present in B either. Conversely, no element of B is present in A (since they are disjoint), and thus no element of B can be present in C either.
 - In general, $C \subseteq A$ implies $C \cap B \subseteq A \cap B$. If the second set is \emptyset , then $C \cap B$ has to be \emptyset since that is the **only** subset of an empty set. Thus, C and B are disjoint too.
- In general, $A \setminus B \neq B \setminus A$. However, if A = B, then both $A \setminus B$ and $B \setminus A$ are \emptyset . Is that the only possibility?
- By the distributive property, $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$. Since $A \cap C \subseteq A$, we get that $(A \cup B) \cap C \subseteq A \cup (B \cap C)$
- It is simply $|A \times B| = |A| \cdot |B|$, the product of the two cardinalities. In the "combinatorics" module, this will be called the "product principle". Do you see why this is true? For each of the |A| choices of the "first entry" in the tuple of $A \times B$, there are precisely |B| choices for the "second entry".