• Fermat's Little Theorem.

We will prove the following theorem remarkable in its own right. Later, we will see how it will lead to an algorithm for public key cryptography.

Theorem 1. Let p be any prime. For any $a \in \mathbb{Z}_p \setminus \{0\}, a^{p-1} \equiv_p 1$.

Remark: Note that the above theorem is for $a \in \mathbb{Z}_p \setminus \{0\}$. For any (larger) a with gcd(a, p), we get $a^{p-1} \equiv_p (a \mod p)^{p-1} \equiv_p 1$.

Remark: The above allows us to do must "faster" modular exponentiation (at least by hand) when the modulus is prime. For instance, instantiating the above theorem for a = 3 and p = 7, we get $3^6 \equiv_7 1$. But we also get $3^{60} \equiv_7 1$ by taking the above to power 10 on both sides (note $1^{10} = 1$). And we also get $3^{61} \equiv_7 3 \cdot 3^{60} \equiv_7 3$.

Proof. The crux of the proof lies in the "dividing out" theorem we did last class. Recall, since every $a \in \mathbb{Z}_p \setminus \{0\}$ has gcd(a, p) = 1, we know that

$$ax \equiv_p ay \Rightarrow x \equiv_p y \tag{1}$$

In particular, if we take two *different* $x, y \in \mathbb{Z}_p \setminus \{0\}$, then $ax \not\equiv_p ay$, that is, $ax \mod p \neq ay \mod p$.

Remark: In other words, if one considers the function $h_a : \mathbb{Z}_p \setminus \{0\} \to \mathbb{Z}_p \setminus \{0\}$ defined as $h_a(x) = ax \mod p$, then h_a is an injective function.

Furthermore, if we look at the numbers of the form $ax \mod p$ as x ranges in $\mathbb{Z}_p \setminus \{0\}$, then we must see all the numbers in $\mathbb{Z}_p \setminus \{0\}$. Indeed, for any $y \in \mathbb{Z}_p$, we know that $ax \equiv_p y$ has the solution $x \equiv_p a^{-1}y$ in $\mathbb{Z}_p \setminus \{0\}$.

Remark: That is, the function h_a defined above is a surjective function. Together with the fact that it is injective, we get it is bijective. That is, h_a is just a scrambler of the numbers in $\mathbb{Z}_p \setminus \{0\}$.

Therefore, we get that the following two sets:

 $A = \mathbb{Z}_p \setminus \{0\} = \{1, 2, \dots, p-1\}$ and $B = \{ax \mod p : x \in A\}$

are the same.

¹Lecture notes by Deeparnab Chakrabarty. Last modified : 28th Aug, 2021

These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at deeparnab@dartmouth.edu. Highly appreciated!

x	$ax \mod p$
1	3
2	1
3	2
4	5
5	1
6	4

Now, since A and B are the same set, we get

Example. Let us just illustrate with p = 7 and a = 3.

$$\prod_{z \in A} z = \prod_{z \in B} z = \prod_{x \in A} h_a(x) = \prod_{x \in A} (ax \bmod p)$$

Taking both sides modulo p, we get

$$\left(\prod_{z \in A} z\right) \equiv_p \left(\prod_{x \in A} (ax)\right) \equiv_p \left(a^{p-1} \cdot \prod_{x \in A} x\right)$$

Let us use the notation $Q := (\prod_{z \in A} z)$ (note Q = (p-1)!). Then, we get

$$Q \equiv_p a^{p-1}Q \tag{2}$$

Finally, we assert that gcd(p, Q) = gcd(p, (p-1)!) = 1. This is problem 1(c) in PSet 8. And now, we can again apply (1) on (2) to get $a^{p-1} \equiv_p 1$ (cancel Q from both sides).

Exercise: Check if the above would be true if p were not a prime but the only restriction was gcd(a, n) = 1. In particular, find a, n such that gcd(a, n) = 1 but $a^{n-1} \not\equiv_n 1$.

Remark: After doing the above exercise you should ask yourself: where all is the property that p is prime used? If you think about it clearly enough, you will indeed prove that if gcd(a, n) = 1, then there is indeed some number ϕ such that $a^{\phi} \equiv_n 1$. A problem in the UGP explores this.