
Binary Search1

In this lecture we look at an extremely powerful idea of speeding up algorithms, and also use it to
introduce time analysis of recursive algorithms. The idea is called “binary search”.

• The canonical problem solved by this technique is the following. The input to this problem is a sorted
list A and a “search” item x. We assume the entries of A and x are both integers2. Our goal is simple:
decide if x ∈ A or not. One could consider variants where in the case x ∈ A you also have to return
the location, but let’s focus on this simpler “decision” problem. For the time being, let’s still assume
we are interested in the number of comparisons we make (everything else is free).

If the list A was not sorted, then x needs to be compared with every element of the list leading to
n comparisons. Why? The main idea is if you didn’t compare x with some A[i] then perhaps the
“adversary” put in x there. This is not a proof by any means, but hopefully gives you an idea why n
may not be avoidable. We now see if A is sorted we can do way better.

• The main idea of binary search is to “quickly halve the search space”. What do we mean? In the
beginning, if x ∈ A, then it has n possible locations. We want to do very few comparisons (as it turns
out, it will be 1 comparison), and reduce the possibilities by a constant fraction (as it turns out, this
will be 1/2). Which comparison does this? This part is creative, but it’s one of those things which is
hard to “unforget”. We compare x with the mid-point A[n/2]. If x = A[n/2], then we are done, and
can say YES. If x < A[n/2], then3 using the fact that A is sorted, we can say x < A[j] for j ≥ n/2.
And so, if x ∈ A it must be in the first “half”, that is, in A[1 : n/2−1]. So we reach the same problem
except the new list is much smaller. We recurse. If x > A[n/2], then similar reasoning: we recurse
on the other half. Done!

Well, we need to take care of the base case. If A had no elements, we say NO. If A had only one
element, then we just check if x is that element and say YES or NO accordingly. One can be smarter
with these base cases. Doesn’t matter much.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 5th Jan, 2024
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2but all we need is that there is some total order among them
3and here we are using that there is a “total ordering”, that is, any two elements can be compared
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1: procedure RECBINS(A, x):
2: n← len(A).▷ note, A is indexed 1 to n

3: if n = 0 then:
4: return NO
5: if n = 1 then:
6: if x = A[1] then:
7: return YES
8: else:
9: return NO

10: else:
11: m← ⌈n/2⌉.
12: ▷ Compare A[m] and x.
13: if A[m] = x then:
14: return YES
15: else if x < A[m] then:
16: return RECBINS(A[1 : m− 1], x)
17: else:▷ That is, x > A[m]

18: return RECBINS(A[m+ 1 : n], x)

• Correctness. I hope all of you can see why it is a correct algorithm. Clearly we say YES only if we
find it. All we need to show is that if x ∈ A, we do say YES. This can be proved by induction on the
size of A. See here, for instance. Let’s understand the running time of this algorithm.

• Running Time. Let’s set up the definition of the function we are interested in. Here it is

T (n) := max
A,|A|≤n,x

Number of comparisons made by RECBINS on (A, x) (1)

That is, T (n) is defined to be the maximum number of comparisons RECBINS makes when run on a
list A and target x, where the list has ≤ n elements. Note that we moved from = n elements to ≤ n
elements; this is just something which makes life easier, because we can say T (m) ≤ T (n) for all
m ≤ n. Comeback to this later if you are confused.

Let us see what can we say about this function. First we note the following.

T (0) = 0 and T (1) = 1 (Base Cases)

This is because when n = 0, we satisfy Line 3 and say NO without making any comps, while if
n = 1, the code in Line 5 makes 1 comparison. What if n ≥ 2?

• Then things get more interesting. The if statement at Line 13 makes 1 comparison. If this comparison
is a equality, then we end. But recall we are in worst-case land, so we assume this is not a equality.
Well then, we either run Line 16 or Line 18. But how long do they take? They are recursive calls!

This is where worst-case analysis will be our friend. Let’s consider Line 16. It’s a recursive call of
RECBINS on an array of length m − 1 (with x). We can’t say exactly how long it takes, but we can
say this time is at most T (m − 1). This is because of how T (m − 1) is defined: it already has the
“worst-case” baked in, and we cannot take more time than the worst case. Let this sink in if you are

2

https://www.cs.dartmouth.edu/~deepc/LecNotes/cs30/lec8.pdf


seeing this for the first time. Similarly, Line 18 takes T (n−m) time. One of the two cases will occur,
we don’t know which, but we can definitely say the time taken is at most max(T (m− 1), T (n−m)).
Since m = ⌈n/2⌉, both of these are ≤ ⌊n/2⌋. And thus, using the fact that T was defined to have
monotonicity, we see that the time taken for either of the cases is at most T (⌊n/2⌋).
In summary, we can say that:

For all n ≥ 2, T (n) ≤ 1 + T (⌊n/2⌋) (Recursive Ineq)

The Equation (Base Cases) and Equation (Recursive Ineq) together form what is called a recurrence
inequality, and the solution to this will lead us to our answer.

• Solving Recurrence Inequalities. We will see a very general theorem which solves recurrence in-
equalities, but let’s use the one above to give the general idea of how it is solved. I like to call this the
“kitty” method; this is not a universal terminology. The reasoning goes something like this.

We want to figure out T (n). We imagine a ball of “size” n. If this ball’s size is 1 or 0, then we
immediately know how much it “costs” using Equation (Base Cases); in this recurrence above, n = 0
costs 0 and n = 1 costs 1.

We interpret (Recursive Ineq) as follows. We think of the “1” in the RHS as a cost you can pay and
put it in a collection (or a kitty), and once you do this, the ball of size n “shatters” and becomes a ball
of size ⌊n/2⌋. Then we put another 1 in the kitty, and off it shatters and becomes ⌊⌊n/2⌋/2⌋. And
so on, till we get to a ball of size which can be covered by the base case. And when we reach that,
we pay all the money in the kitty plus money for the base case. All this is just an evocative way of
describing the following inequalities:

T (n) ≤ T (⌊n/2⌋) + 1

≤ (T (⌊⌊n/2⌋/2⌋) + 1) + 1

= T (⌊⌊n/2⌋/2⌋) + (1 + 1)︸ ︷︷ ︸
kitty

≤ (T (⌊⌊⌊n/2⌋/2⌋/2⌋) + 1) + (1 + 1)

...

≤ T (1) + (1 + · · ·+ 1)︸ ︷︷ ︸
stuff in kitty at the end

• For simplicity, let us assume n was a power of 2 so that all flooring business doesn’t bother us. Say
n = 2k. Then, let’s see how many times we need to “shatter” this ball till it gets to size 1: a little
thought shows you the answer is k times. And so, the value of T (2k) = k+1, where the +1 is due to
the fact that the size 1 ball costs 1 unit.

• What about a general n? Let’s do an example here; say n = 23. What happens to the balls in our
evocative picture. Well, a size 23 ball becomes size 11 then it becomes size 5 then size 2 and then size
1. So it puts 4 in the kitty, and then another 1 for the base case; gives T (23) ≤ 5.

Let us now write these numbers in binary4 notation. We see that 23 = (10111)2 and 11 = (1011)2
and 5 = (101)2 and 2 = (10)2 and 1 = (1)2. Do you see what’s going on? As we go left to right, the
last bit is just lopped off; this is the right-shift operation.

4perhaps explaining why it’s called binary search
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So, we conclude that for any n, the number of smashings till we get to 1 is precisely the number of
bits required to describe n in binary minus 1. When we add the +1 from the basecase, we get

T (n) ≤ Number of bits to write n in binary = ⌈log2(n+ 1)⌉

• Binary Search is more than just Searching in a Sorted Array. Let me end this lecture by saying
that although “binary search” is used to imply the algorithm that we saw above, it also often used
to denote the idea of “quickly halving ones search space”. Here is another example which is solved
using binary search which has no “sorted arrays” explicitly given.

• Group Testing. You have collected n blood samples from soldiers and you know one of these is
contaminated. You have a very expensive test which can take in a mixture of blood and detect con-
tamination. You need to find the contaminated sample with as few tests, where in each test you will
take some portions of each sample and feed the mixture to the test. How few samples do you need?
The above problem is a special case of the “real life” problem from the late 1940’s, and is now called
the group testing problem.

Here is the “binary search” algorithm. We take the first half of samples. That is, S := {1, 2, . . . , n/2}
and run the test on it. If the test succeeds, that is, tells there is a contaminated sample in S, then we
recurse on this set S. Otherwise, we know that the contaminated sample lies in T := [n] \ S, and so
we recurse on this set T . Each of these sets are of size (roughly) n/2, and thus we halved our search
space with one test. Of course when n = 1, we know that this must be the contaminated sample, and
we can just return it. Thus, all in all, the number of tests follows almost5 the same recurrence as the
one above for binary search, implying, roughly log2 n samples are all we need.

Exercise: Suppose you knew that there are k contaminated samples. How many tests can you
use to find all of these? I hope with a little thought you see you can do this in roughly k log2 n
tests. Can you do better?

5the difference is that instead of ⌊n/2⌋ we will have ⌈n/2⌉ in the RHS of Equation (Recursive Ineq). Can you solve this
recurrence exactly for general n?
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