
More on Recurrence Solutions1

1 Proof of the Master Theorem

Theorem 1. Consider the following recurrence:

T (n) ≤ a · T (dn/be) +O(nd)

where a, b, d are non-negative integers. Then, the solution to the above is given by

T (n) =


O(nd) if a < bd

O(nd log n) if a = bd

O(nlogb a) if a > bd

Proof. As before, we replace theO(nd) by≤ C ·nd for some constant C > 0. We also replace the dn/be by
the simpler n/b and worry about how to handle these later. Once again, you should try drawing the recursion
tree and see how the kitty grows. Here we give the “opening the brackets and consolidating” method.

T (n) ≤ aT (n/b) + C · nd

≤ a
(
aT (n/b2) + C · (n/b)d

)
+ C · nd

= a2T (n/b2) + Cnd ·
(
1 +

a

bd

)
≤ a2

(
aT (n/b3) + C ·

(
n/b2

)d)
+ Cnd ·

(
1 +

a

bd

)
= a3T (n/b3) + Cnd ·

(
1 +

a

bd
+
( a
bd

)2)
...

≤ akT (n/bk) + Cnd ·
(
1 +

a

bd
+
( a
bd

)2
+ · · ·+

( a
bd

)k−1
)

(1)

(2)

To finish the proof, we need to argue about the Geometric Sum in (1). Note that when a = bd, the
geometric sum evaluates to k. When a < bd, then if we denote 1 > ρ = a/bd, the Geometric Sum evaluates
to ≤ 1

1−ρ = O(1) since a, b, d are constants. When a > bd, then if we denote 1 < ρ = a/bd, the Geometric

Sum evaluates to ρk−1
ρ−1 . In sum, we get for any k,

T (n) = akT (n/bk) + Cnd ·


O(k) if a = bd

O(1) if a < bd

O((a/bd)k) if a > bd
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To finish the proof, we set k = logb n in which case the first term akT (n/bk) evaluates to O(alogb n) =
O(nlogb a). When a ≤ bd, we get nlogb a ≤ nd. Thus in Case 1 and Case 2 above, we see that the Master
theorem follows. The third case of the above cases evaluates to( a

bd

)k
=
(
blogb(a/b

d)
)k

=
(
blogb n

)logb(a/bd)
= n(logb a−d) = nlogb a/nd

Therefore, in the third case the second summand evaluates to O(nlogb a).

2 Taking care of ceilings and floors.

Let’s address the icky detail of “forgetting” the ceilings and floors. We will prove this for the mergesort
recurrence and to see you have understood it, you should try it to prove the master theorem. This is left as
an exercise below. Let us recall the true mergesort recurrence

T (n) ≤ T (bn/2c) + T (dn/2e) +O(n) (3)

First, we will use monotonicity of T (). That is, we will use the fact for any a ≤ b we have T (a) ≤ T (b).
Why is that the case? This follows from the definition of T – T (a) is the worst case running time among all
instances of size ≤ a. These clearly are a subset of all instances of size ≤ b. Therefore, we will simplify by
stating

T (n) ≤ 2T (dn/2e) +O(n) ≤ 2T (n/2 + 1) +O(n)

where we have used the fact bxc ≤ dxe < x+ 1 for any x.
Next, we explicitly write what O(n) means (recall the lecture on Big-Oh, section on abuse of notation).

We get that there exists positive constants A,B such that

T (1) ≤ B, and T (n) ≤ 2T (n/2 + 1) +A · n, for all n ≥ 2 (4)

Next, we do the change-of-function trick. We define a new function S(n) := T (n + 2). We establish the
following property.

Claim 1. S(1) = O(1), and for all n > 1, S(n) ≤ 2S(n/2) +O(n)

Proof. Note that S(1) = T (3) = O(1).
To see the recurrence on S, observe

S(n) = T (n+ 2) ≤ 2T

(
n+ 2

2
+ 1

)
+A(n+ 2)

= 2T
(n
2
+ 2
)
+ (A · n+ 2A)

= 2S(n/2) +O(n)

Thus, we have moved from a recurrence (3) with ceilings and floors to a recurrence on a different
function without them. And this latter one, we did solve in class. We know that

S(n) = O(n log n)

Noting that T (n) = S(n− 2) and using that (n− 2) · log(n− 2) = O(n log n), we get T (n) = O(n log n)
as well. Which is what we claimed.
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3 The Grandmaster Theorem: The Akra-Bazzi Method*

Sometimes one doesn’t divide a problem into equal or even almost equal sized pieces. In that case the
Master theorem doesn’t apply. One needs a more powerful tool. Here it is in its rather gory form.

Theorem 2 (Akra-Bazzi Theorem). Consider the following recurrence:

T (n) ≤ f(n) +
k∑
i=1

ai · T (dn/bie)

where

• f(n) = O(nc) for some constant c,

• ai, bi’s are constants with ai > 0 and bi > 1,

• p is such that
∑k

i=1
ai
bpi

= 1

then,

T (n) = O

(
np ·

(
1 +

∫ n

1

f(t)

tp+1
dt

))

©
One can put this is in a form which is similar to the Master theorem and probably useful enough.

Theorem 3. Consider the following recurrence:

T (n) ≤
k∑
i=1

ai · T (dn/bie) +O(nd)

Then, Then, the solution to the above is given by

T (n) =


O(nd) if

∑k
i=1 ai/b

d
i < 1

O(nd log n) if
∑k

i=1 ai/b
d
i = 1

O(np) if
∑k

i=1 ai/b
d
i > 1

where, in the third case p is such that
∑k

i=1 ai/b
p
i = 1. Note that in this case, p is necessarily > d.

It’s easy to see this generalizes the Master Theorem. It also gives the following useful corollary.

Theorem 4. Consider the recurrence T (n) ≤ T (dθ1ne) + T (dθ2ne) + · · ·+ T (dθkne) +O(n) where
k is a constant, every θi is a constant, and

∑k
i=1 θi < 1. Then, T (n) = O(n).
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