
Divide and Conquer: Merge Sort + Solving Recurrences1

In this and a few coming lectures, we look at the divide-and-conquer paradigm for algorithm design.
This is applicable when any instance of a problem can be broken into smaller instances, such that the
solutions of the smaller instances can be combined to get solution to the original instance. One usually has
a “naive” but “slow” method to solve the problem at hand, and the D&C methodology (usually) “wins” if
the combining can be done faster than the naive running time.

1 Merge Sort

SORTING AN ARRAY

Input: An array A[1 : n] of integers.
Output: A sorted (non-decreasing) permutation B[1 : n] of A[1 : n].
Size: The number n of entries in A.

Remark: It is fair to ask why the size of the problem above doesn’t include the number of bits required
to encode A[j]’s and x. The short answer is that it is a modeling choice. If the numbers A[j]’s are
“small”, that is, they are at most some polynomial in n and thus fit in O(log n) sized registers, then we
assume that simple operations such as adding, multiplying, dividing, comparing, reading, writing take
Θ(1) time. The reason being that for numbers that fit in word/registers indeed these operations are fast
compared to the other operations of the algorithm.

The “naive” algorithm for sorting is one which repeatedly takes the minimum element and puts it in the
front; this algorithm takes O(n2) time. We now show how to do better using divide-and-conquer. This
algorithm is merge-sort. You have perhaps seen this algorithm before (in CS 10 or CS 1), and the idea nicely
captures the Divide-and-Conquer strategy.

First we notice if n = 1, then we return the same array; this is the base case. Next, given an input A[1 : n]
which needs to be sorted, we wish to divide into two smaller subproblems. We start with a natural way:
we divide A[1 : n] into two halves A[1 : n/2] and A[n/2 + 1 : n]. Next, we recursively apply the same
algorithm to these halves to obtain sorted versions B1 and B2. Note that the final answer that we need is a
sorted version of B1 ∪B2. So in the combine/conquer step we do exactly this.

At this point we need to figure out a “win”: why is sorting B1 ∪ B2 any easier than sorting A[1 : n]
to begin with. The fact we exploit is that these B1 and B2 are individually sorted. We can use this to sort
B1∪B2 way faster than the Θ(n2) naive algorithm for A[1 : n]. This is the non-trivial part of the algorithm,
and once we get a “win” here over the naive algorithm, we will see that we get a win over all.

Combine Step. Let us then recall the Combine procedure of MERGESORT
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COMBINE

Input: Two sorted arrays P [1 : p] and Q[1 : q].
Output: Sorted array R[1 : r] of elements of P ∪Q, with r = p + q.
Size: p + q.

This is an iterative algorithm which keeps three pointers i, j, k all set to 1. At each step we compare P [i]
and Q[j], and R[k] is set to whichever is smaller. That particular pointer and k are incremented. The process
stops when either i reaches p + 1 or j reaches q + 1, in which case the rest of the other array is appended to
R. This takes O(p + q) time as each step takes O(1) time, in each step either i or j increments, and so the
algorithm terminates in (p + q) steps. A formal pseudocode is given below both of the above combine step
and the merge sort.

1: procedure COMBINE(P [1 : p], Q[1 : q]):
2: . P and Q are sorted; outputs R a sorted array of elements in P and Q.
3: i = j = k ← 1.
4: while i < p + 1 and j < q + 1 do:
5: if (P [i] ≤ Q[j]) then:
6: R[k]← P [i]
7: i← i + 1
8: else:
9: R[k]← Q[j]

10: j ← j + 1
k ← k + 1

11: if i > p then:
12: Append rest Q[j : q] to R
13: else:
14: Append rest of P [i : p] to R

15: return R.

Theorem 1. If P and Q are sorted, then COMBINE(P,Q) returns a sorted array of the elements in P
and Q.

Proof. We first show that R is sorted. The reason is that P and Q are sorted and thus elements added to R
are increasing. Formally, in an iteration k of the while loop, an element is added to R as R[k]. This element
is either an element P [i] or an element Q[j], for some i and j, whichever is smaller. Let us assume it was
P [i]; the other case can be analogously argued. The previous element added to R (in the previous loop),
that is, R[k − 1] was either P [i − 1] (in which case i − 1 was incremented to i) or it was Q[j − 1]. If the
former, then R[k − 1] ≤ R[k] because P [i − 1] ≤ P [i] since P is sorted. If the latter, and this is crucial,
then Q[j − 1] must have been compared with P [i] since i didn’t increment in the (k − 1)th loop. And thus,
Q[j − 1] ≤ P [i] = R[k]. That is, even in this case R[k − 1] ≤ R[k]. Thus in each step, what is added to R
is increasing implying R is sorted. Secondly, all elements of P and Q are visited in this order. And thus, R
is a sorted order of all elements in P and Q.
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Theorem 2. COMBINE(P,Q) takes O(p + q) time.

Proof. Here is a general principle: when analyzing the running-time of an algorithm with a while loop,
one needs to figure out a measure/quantity/potential which (a) either monotonically strictly increases or
strictly decreases in each iteration of the while loop, (b) starts of at a known value, and (c) one can argue
termination of the while loop if the value ever reaches a different quantity. Almost all while loop running
times are measured that way.

For the COMBINE, what is this quantity? Well, we see that in the while loop, either i increments or j
increments. Therefore, the quantity of interest is (i + j). This quantity starts off at 2. It always increases
by 1. And finally note that if it ever reaches (p + q + 2), then either i ≥ p + 1 or j ≥ q + 1 (for otherwise
i < p + 1, j < q + 1 implying i + j < p + q + 2.) That is, the while loop terminates. This shows the
while loop cannot have more than (p+q) iterations. Since each iteration takes O(1) time, we get the desired
running time for COMBINE.

Armed with the above, the complete divide-and-conquer algorithm for sorting is given as:

1: procedure MERGESORT(A[1 : n]):
2: . Returns sorted order of A[1 : n]
3: if n = 1 then:
4: return A[1 : n]. . Singleton Array

5: m← bn/2c
6: B1 ←MERGESORT(A[1 : m])
7: B2 ←MERGESORT(A[m + 1 : n])
8: return COMBINE(B1, B2)

Theorem 3. MERGESORT takes O(n log n) time.

Proof. Let T (n) be the worst case running time of MERGESORT on arrays of size n. Since MERGESORT

is a recursive algorithm, just as we did in Lecture 3 with MULT and DIVIDE, we try figuring out line by line
the times taken. Let’s begin.

First, we see that when n = 1, only Line 3 and Line 4 run. The time taken is O(1). Thus, we get

T (1) = O(1) (1)

Again, this is because any (finite) time algorithm on a constant sized input takes O(1) time.
For larger n, the code proceeds to Lines 6 to 8. Line 6 is a recursive call. Since it is on an array of

size m, by definition of T (), this takes at most T (m) time. Similarly, Line 7 takes at most T (n−m) time.
And, Theorem 2 tells us that Line 8 takes O(n) time. Finally, we note that since m = bn/2c, we get that
n−m = dn/2e. Therefore, putting all together, we get the recurrence.

T (n) ≤ T (bn/2c) + T (dn/2e) + O(n), ∀n > 1 (2)
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To get to the big picture, we get rid of the floors and ceilings. In the supplement, you can see why this
is kosher2. Furthermore, we also replace the O(n) term by ≤ a · n for some constant a, to get

T (n) ≤ 2T (n/2) + a · n, ∀n > 1 (3)

We will apply the “kitty method” or “opening up the brackets” method to solve the recurrence inequality
given by (1) and (3).

T(n)

n/2 n/2

n/4 n/4 n/4 n/4

Kitty

≤ an

≤ a(n/2) + a(n/2) = an

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8 ≤ a(n/4) * 4 = an

… …

T (n) ≤ 2T (n/2) + an

≤ 2 (2T (n/4) + an/2) + an

= 4T (n/4) + 2an

≤ 4 (2T (n/8) + an/4) + 2an

= 8T (n/8) + 3an

...

≤ 2kT (n/2k) + kan

Setting k such that n/2k ≤ 1 gives us T (n) = O(n log n).

1.1 The Master Theorem

The following theorem is a useful hammer to solve many recurrences.

Theorem 4. Consider the following recurrence:

T (n) ≤ a · T (dn/be) + O(nd)

2if you are a little worried about this, then (a) good, and (b) note that for large x, dxe, bxc are really x± some “lower order”
term, and so since we are talking using the Big-Oh notation, it shouldn’t matter. This is not a rigorous argument — it is not meant
to completely convince you, but it should give you a hint to why this may be true.
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where a, b, d are non-negative reals. Then, the solution to the above is given by

T (n) =


O(nd) if a < bd

O(nd log n) if a = bd

O(nlogb a) if a > bd

The proof is similar in spirit to that of Theorem 3 and you are recommended trying it. Instead of splitting
into two, each “ball” splits into a different balls each of size n/b (ignoring floors & ceilings), but it puts
Θ(nd) in the kitty. If you write the expression as above (it’s a little more complicated than the one we say
before), then you will get a geometric series whose base is exactly a/bd. Thus if a < bd (that is, the base
< 1), then the geometric sum is small, and the total cost is bounded by the first deposit in the kitty. If
a = bd (that is, if the base = 1) then we make around the same amount of deposits in the kitty, and we do it
Θ(log n) times. Finally, if a > bd, then the geometric series is bounded by the other end, and the “number
of small balls” (which is this bizarrish term nlogb a) is what dominates. All this is perhaps too high-level to
be useful – see the supplement for the proof.
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