
Algorithmica (2020) 82:1057–1080
https://doi.org/10.1007/s00453-019-00630-4

Deterministic Dynamic Matching in O(1) Update Time

Sayan Bhattacharya1 · Deeparnab Chakrabarty2 ·Monika Henzinger3

Received: 2 March 2018 / Accepted: 9 September 2019 / Published online: 28 September 2019
© The Author(s) 2019

Abstract
We consider the problems of maintaining an approximate maximum matching and
an approximate minimum vertex cover in a dynamic graph undergoing a sequence
of edge insertions/deletions. Starting with the seminal work of Onak and Rubinfeld
(in: Proceedings of the ACM symposium on theory of computing (STOC), 2010), this
problem has received significant attention in recent years. Very recently, extending the
framework of Baswana et al. (in: Proceedings of the IEEE symposium on foundations
of computer science (FOCS), 2011) , Solomon (in: Proceedings of the IEEE sympo-
sium on foundations of computer science (FOCS), 2016) gave a randomized dynamic
algorithm for this problem that has an approximation ratio of 2 and an amortized
update time of O(1) with high probability. This algorithm requires the assumption of
an oblivious adversary, meaning that the future sequence of edge insertions/deletions
in the graph cannot depend in any way on the algorithm’s past output. A natural way
to remove the assumption on oblivious adversary is to give a deterministic dynamic
algorithm for the same problem in O(1) update time. In this paper, we resolve this
question. We present a new deterministic fully dynamic algorithm that maintains a
O(1)-approximate minimum vertex cover and maximum fractional matching, with an
amortized update time of O(1). Previously, the best deterministic algorithm for this
problem was due to Bhattacharya et al. (in: Proceedings of the ACM-SIAM sympo-
sium on discrete algorithms (SODA), 2015); it had an approximation ratio of (2 + ε)

and an amortized update time of O(log n/ε2). Our result can be generalized to give
a fully dynamic O(f 3)-approximate algorithm with O(f 2) amortized update time
for the hypergraph vertex cover and fractional hypergraph matching problem, where
every hyperedge has at most f vertices.

An extended abstract of this paper appeared as [5] in Proceedings of IPCO 2017.

D. Chakrabarty: Work done while the author was at Microsoft Research, India.
M. Henzinger: The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant
Agreement no. 340506.

B Sayan Bhattacharya
s.bhattacharya@warwick.ac.uk

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-019-00630-4&domain=pdf
http://orcid.org/0000-0003-1612-0296

1058 Algorithmica (2020) 82:1057–1080

Keywords Dynamic algorithms · Data structures · Graph algorithms · Matching ·
Vertex cover

1 Introduction

Computing a maximum cardinality matching is a fundamental problem in computer
science with applications, for example, in operations research, computer science, and
computational chemistry. In many of these applications the underlying graph can
change. Thus, it is natural to ask how quickly a maximummatching can be maintained
after a change in the graph. As nodes usually change less frequently than edges,
dynamic matching algorithms usually study the problem where edges are inserted and
deleted, which is called the (fully) dynamic matching problem.1 The goal of a dynamic
matching algorithm is to maintain either an actual matching (called the matching
version) or the valueof thematching (called the value version) as efficiently as possible.

Unfortunately, the problem of maintaining even just the value of the maximum
cardinality matching is hard: There is a conditional lower bound that shows that no
(deterministic or randomized) algorithm can achieve at the same time an amortized
update time of O(m1/2−ε) and a query (for the size of the matching) time of O(m1−ε)

for any small ε > 0 [15] (see [1] for conditional lower bounds using different assump-
tions). The best upper bound is Sankowski’s randomized algorithm [21] that solves
the value problem in time O(n1.495) per update and O(1) per query. Thus, it is natural
to study the dynamic approximatemaximum matching problem, and there has been a
large body [3,7,8,14,17,18,22] of work on it and its dual, the approximate vertex cover
problem, in the last few years.

Dynamic algorithms can be further classified into two types:Algorithms that require
an oblivious (aka non-adaptive) adversary, i.e., an adversary that does not base future
updates and queries on the answers to past queries, and algorithms thatwork even for an
adaptive adversary. Obviously, the earlier kind of algorithms are less general than the
later.Unfortunately, the known randomized dynamic approximatematching and vertex
cover algorithms do notworkwith an adaptive adversary [3,18,22]. Solomon [22] gives
the best such randomized algorithm: It achieves O(1) amortized update time (with
high probability) and O(1) query time for maintaining a 2-approximate maximum
matching and a 2-approximate minimum vertex cover. He also extends this result to
the dynamic distributed setting (à la Parter, Peleg, and Solomon [19]) with the same
approximation ratio and update cost.

Our Result In this paper we present the first deterministic algorithm that maintains an
O(1)-approximation to the size of the maximum matching in O(1) amortized update
time and O(1) query time. We also maintain an O(1)-approximate vertex cover in
the same update time. Note that this is the first deterministic dynamic algorithm with
constant update time for any non-trivial dynamic graph problem. This is significant as
for other dynamic problems such as the dynamic connectivity problem or the dynamic
planarity testing problem there are non-constant lower bounds in the cell probe model

1 Node updates are usually handled through the insertion and deletion of isolated nodes, but there has been
also some work on the node insertions-only or node deletions-only problem [11].

123

Algorithmica (2020) 82:1057–1080 1059

on the time per operation [16,20]. Thus, our result shows that no such lower bound
can exist for the dynamic approximate matching problem.

Previous Work There has been prior work on deterministic algorithms for dynamic
approximate matching, but they all have�(poly(log n)) update time. One line of work
concentrated on reducing the approximation ratio as much as possible, or at least
below 2: Neiman and Solomon [17] achieved an update time O(

√
m) for maintaining

a 3/2-approximate maximum matching and 2-approximate minimum vertex cover.
This result was improved by Gupta and Peng [14] who gave an algorithm with update
time O(

√
m/ε2) formaintaining a (1+ε)-approximatemaximummatching. Recently,

Bernstein and Stein [4] gave an algorithm with O(m1/4/ε2) amortized update time
for maintaining a (3/2 + ε)-approximate maximum matching. Another line of work,
and this paper fits in this line, concentrated on getting a constant approximation while
reducing the update time to polylogarithmic: Bhattacharya, Henzinger and Italiano [7]
achieved an O(log n/ε2) update time formaintaining a (2+ε)-approximatemaximum
fractional matching and a (2 + ε)-approximate minimum vertex cover. Note that any
fractional matching algorithm solves the value version of the dynamic matching prob-
lemwhile degrading the approximation ratio by a factor of 3/2 [8]. Thus, the algorithm
in [7] maintains a (3+ ε)-approximation of the value of the maximum matching. The
fractional matching in this algorithm was later “deterministically rounded” by Bhat-
tacharya, Henzinger and Nanongkai [8] to achieve a O(poly(log n, 1/ε)) update time
for maintaining a (2+ ε)-approximate maximum matching. Very recently, a third line
of work has focussed on getting small constant approximation in O(poly log n) worst
case update time.Bhattacharya,Henzinger andNanongkai [9] showed how tomaintain
a (2+ ε)-approximate maximum fractional matching and a (2+ ε)-approximate min-
imum vertex cover in O(log3 n/ε4) worst case update time. Subsequently, Charikar
and Solomon [12] and Arar, Chechik, Cohen, Stein andWajc [2] showed how to main-
tain a (2+ε)-approximatemaximum (integral) matching in O(poly log(n, 1/ε))worst
case update time.

Our method also generalizes to the hypergraph vertex (set) cover and hypergraph
fractional matching problem which was considered by [6]. In this problem the hyper-
edges of a hypergraph are inserted and deleted over time. f indicates the maximum
cardinality of any hyperedge. The objective is to maintain a hypergraph vertex cover,
that is, a set of vertices that hit every hyperedge. Similarly a fractional matching in
the hypergraph is a fractional assignment (weights) to the hyperedges so that the total
weight faced by any vertex is atmost 1.We give an O(f 3)-approximate algorithmwith
amortized O(f 2) update time; compare this with the O(f 2)-approximate algorithm
due to Bhattacharya et al. [6] whose amortized update time was O(f · log(m + n));
we trade-off O(f) in the approximation factor with O(log n) in the update time.

Subsequent Work Very recently, after the publication of the conference version of
our paper, Bhattacharya and Kulkarni [10] have shown how to maintain a (2 + ε)-
approximate minimum vertex cover deterministically in a dynamic graph in O(1/ε2)
amortized update time.When f = 2, this improves upon the approximation guarantee
of our result (which is a large constant). Arguably, however, our analysis in this paper
is more intuitive and easy to follow, compared to the analysis in [10] which uses an
extremely intricate potential function. Also, for technical reasons, the analysis in [10]

123

1060 Algorithmica (2020) 82:1057–1080

holds only for simple graphs (with f = 2). In other words, the result in [10] does not
subsume our result on hypergraph vertex (set) cover and fractional matching.

1.1 Our Techniques

Our algorithm builds and simplifies the framework of hierarchical partitioning of ver-
tices proposed byOnak andRubinfeld [18],whichwas later enhanced byBhattacharya,
Henzinger and Italiano [7] to give a deterministic fully-dynamic (2+ δ)-approximate
vertex cover andmaximummatching in O(log n/δ2)-amortized update time. The hier-
archical partition divides the vertices into L := O(log n)-many levels and maintains
a fractional matching and vertex cover. To prove that the approximation factor is
good, Bhattacharya et. al. [7] also maintain approximate complementary slackness
conditions. An edge insertion or deletion can disrupt these conditions (and indeed
at times the feasibility of the fractional matching), and a fixing procedure maintains
various invariants. To argue that the update time is bounded, [7] gives a rather involved
potential function argument which proves that the update time bounded by O(L), the
number of levels, and is thus O(log n). It seems unclear whether the update time can
be argued to be a constant or not.

Our algorithm follows the same approach as Bhattacharya et. al. [7], maintaining
invariants for the set of edges incident to a node in the hierarchical graph decompo-
sition, calling nodes that violate them dirty and fixing all dirty nodes after each edge
insertion or deletion. To fix dirty nodes the algorithm moves them up or down in the
hierarchy. All the work in the algorithm consists of inserting and deleting edges and
moving nodes up and down the hierarchy. Our algorithm and analysis which we sketch
below is very different and simpler than the potential-function based analysis in [7].

To achieve an amortized constant running time, however, we need to develop a
number of technical innovations:

• We introduce a new state, called Super- Clean , that fulfills much stricter invari-
ants, not only on the total set of edges incident to a node, but also on the subset of
these edges whose other endpoint lies at a higher level in the hierarchy. The fact
that an upper bound on this new type of edges (a) can be achieved by the update
algorithms and (b) can be exploited to show a constant bound on the amortized
running time is the crucial new insight in this paper. Accordingly, we suitably
modify the subroutines that move nodes up and down. We show that one of these
subroutines, namely the one that moves nodes down the hierarchy, ensures the
strict invariants of the Super- Clean state are fulfilled after it runs; however, the
strict invariants need not hold when a node moves up. To analyze, we show that
the total time of the “down-movements” is linear in the number T of the update
operations; however, arguing about the “up-movements” is trickier. Intuitively,
one down-movement might drop a vertex from some level i down to level 0, but it
might take i up-movements for the node to achieve level i again. Thus, there might
be L times as many up-movements as there are down-movements, and, hence a
naive argument may count the total cost for all up-movements to be up to L times
the total cost of all down-movements. But this would only result in an O(LT) total
time, which would only give a logarithmic amortized time. We show, however, by

123

Algorithmica (2020) 82:1057–1080 1061

using the stricter conditions of the Super- Clean state, that this is not the case
and we can indeed bound the total cost of all up-movements up to level i by the
cost of the single down-movement from i .

• To analyze the up-movements, we partition the sequence of operations we perform
into epochs. Note that Solomon [22] also used epochs, but with a very different
definition of epochs: In [22] an epoch of an edge is a maximal time interval that
an edge remains matched. For us, an epoch of a vertex is a maximal time period
during which the vertex remains at the same level of the hierarchy. Since a vertex
only becomes Super- Clean when it moves down, we need to group together
consecutive epochs where the vertex moves only up. We call such a consecutive
sequence of epochs a phase and the crucial part in our analysis is to analyse the
cost of the algorithm in each phase. At a high level it works as follows: The number
of phases is linear in the number of down-movements plus all the edges that exist
at the end. Additionally the way the invariants are set up, the cost of all the epochs
in a given phase are geometrically increasing and, thus, the total cost of a phase is
dominated by the last epoch in that phase. We then show that the cost of the last
epochs of all phases can be “charged” to the cost of all down-movements.

As these technique easily generalize to the hypergraph setting and, thus, we state all
our results in the hypergraph setting. It would be interesting to see other scenarios
where approximation ratios can be slightly traded in for huge improvements in the
update time.

Remark Independently of our work, Gupta et al. [13] has obtained a O(f 3)-
approximation algorithm formaximum fractionalmatching andminimumvertex cover
in a hypergraph in O(f 2) amortized update time. Here, the symbol f denotes the
maximum number of nodes that can be incident on a hyperedge. Their algorithm and
analysis are also very similar to ours using an asymmetry between how one treats UP
and DOWN moves, and using the notion of epochs like we do.

2 Notations and Preliminaries

Since the hypergraph result implies the graph result, henceforthwe consider the former
problem. The input hypergraph G = (V , E) has |V | = n nodes. Initially, the set
of hyperedges is empty, i.e., E = ∅. Subsequently, an adversary inserts or deletes
hyperedges in the hypergraph G = (V , E). The node-set V remains unchanged with
time. Each hyperedge contains at most f nodes. We say that f is the maximum
frequency of a hyperedge. If a hyperedge e has a node v as one of its endpoints, then
we write v ∈ e. For every node v ∈ V , we let Ev = {e ∈ E : v ∈ e} denote the set of
hyperedges that are incident on v.

A matching is a subset of hyperedges M ⊆ E that do not share any common
endpoint. The size of a matching M is given by |M |. In a fractional matching, each
hyperedge e ∈ E receives a (possibly fractional) weight w(e) ≥ 0 subject to the
following constraint: The total weight Wv = ∑

e∈Ev
w(e) received by every node

v ∈ V from all the hyperedges incident on v is at most 1. The size of a fractional
matching is given by the sum of the weights of all the hyperedges in G . Note that if

123

1062 Algorithmica (2020) 82:1057–1080

w(e) ∈ {0, 1} for all e ∈ E , then the fractional matching becomes a simple matching
M ⊆ E , where M is the subset of hyperedges e withw(e) = 1. Finally, a vertex cover
is a subset of nodes V ′ ⊆ V such that every hyperedge e ∈ E has at least one endpoint
in V ′. The size of the vertex cover is given by |V ′|. From LP-duality, it follows that in
any hypergraph G = (V , E) the size of the maximum fractional matching is at most
the size of the minimum vertex cover (see Appendix A).

We consider a fully dynamic setting, where the hypergraph G = (V , E) is getting
updated via a sequence of edge insertions/deletions. In this setting, our goal is to
maintain an approximatemaximum fractionalmatching and an approximateminimum
vertex cover in G . Our main result is stated in Theorem 2.1.

Theorem 2.1 We can maintain an O(f 3) approximate maximum fractional matching
and an O(f 3) approximateminimumvertex cover in the input hypergraphG = (V , E)

in O(f 2) amortized update time.

Throughout the rest of this paper, we fix two parameters α and β as follows.

β = 6, and α = 1 + 28 f 2β2. (1)

We will maintain a hierarchical partition of the node-set V into L + 1 levels
{0, . . . , L}, where L = ⌈

f · logβ n
⌉ + 1. We let �(v) ∈ {0, . . . , L} denote the level

of a node v ∈ V . We define the level of a hyperedge e ∈ E to be the maximum level
among its endpoints, i.e., �(e) = maxv∈e �(v). The levels of nodes (and therefore
hyperedges) induce the following weights on hyperedges: w(e) := β−�(e) for every
hyperedge e ∈ E . For all nodes v ∈ V , let Wv := ∑

e∈Ev
w(e) be the total weight

received by v from its incident hyperedges. We will satisfy the following invariant
after processing a hyperedge insertion or deletion.

Invariant 2.2 Every node v ∈ V at level �(v) > 0 has weight 1/(αβ2) < Wv < 1.
Every node v ∈ V at level �(v) = 0 has weight 0 ≤ Wv ≤ 1/β2.

Corollary 2.3 Under Invariant 2.2, the nodes in levels {1, . . . , L} form a vertex cover
in G .

Proof Suppose that there is a hyperedge e ∈ E with �(v) = 0 for all v ∈ e. Then we
also have �(e) = 0 and w(e) = 1/β�(e) = 1/β0 = 1. So for every node v ∈ e, we
get: Wv ≥ w(e) = 1. This violates Invariant 2.2 as β > 1. 	

Invariant 2.2 ensures that w(e)’s form a fractional matching satisfying approximate
complementary slackness conditions with the vertex cover defined in Corollary 2.3.
This gives the following theorem.

Theorem 2.4 In our algorithm, the hyperedge weights {w(e)} form a f αβ2-approxim-
ate maximum fractional matching, and the nodes in levels {1, . . . , L} form a f αβ2-
approximate minimum vertex cover.

123

Algorithmica (2020) 82:1057–1080 1063

Proof Consider the set of nodes T = {v ∈ V : �(v) > 0}. By Corollary 2.3, the set T
forms a vertex cover in G . We now compare the size of this vertex cover with the size
of the fractional matching {w(e)} as follows.

|T | = |{v ∈ V : �(v) > 0}|
≤ αβ2 ·

∑

v∈T
Wv

≤ αβ2 ·
∑

v∈V
Wv

≤ f αβ2 ·
∑

e∈E
w(e).

In the above derivation, the first inequality holds since Wv > 1/(αβ2) for all v ∈ T
under Invariant 2.2. The third inequality holds since every node in G is incident
upon at most f hyperedges. Thus, the set T forms a valid vertex cover in G and the
weights {w(e)} form a valid fractional matching in G such that the size of the vertex
cover T is at most f αβ2 times the size of the fractional matching {w(e)}. Since the
size of the maximum fractional matching in G is upper bounded by the size of the
minimum vertex cover in G , we conclude that the fractional matching {w(e)} is a
f αβ2-approximate maximum fractional matching in G , and furthermore, the set of
nodes T form a f αβ2-approximate minimum vertex cover in G . 	

We introduce some more notations. For any vertex v, let W+
v := ∑

e∈Ev :�(e)>�(v)

w(e) be the total up-weight received by v, that is, weight from those incident hyper-
edges whose levels are strictly greater than �(v). For all levels i ∈ {0, 1, . . . , L}, we
letWv→i andW

+
v→i respectively denote the values ofWv andW+

v if the node v were to
go to level i and the levels of all the other nodes were to remain unchanged. More pre-
cisely, for every hyperedge e ∈ E and node v ∈ e, we define �v(e) = maxu∈e:u �=v �(u)

to be the maximum level among the endpoints of e that are distinct from v. Then we
have: Wv→i := ∑

e∈Ev
β−max(�v(e),i) and W+

v→i := ∑
e∈Ev :�v(e)>i β

−�v(e). Our algo-
rithm maintains a notion of time such that in each time step the algorithm performs
one elementary operation. We let Wv(t) denote the weight faced by v right before the
operation at time t . Similarly define Wv→i (t),W+

v (t), and W+
v→i (t).

Different States of a Node Before the insertion/deletion of a hyperedge in G , all nodes
satisfy Invariant 2.2. When a hyperedge is inserted (resp. deleted), it increases (resp.
decreases) the weights faced by its endpoints. Accordingly, one or more endpoints can
violate Invariant 2.2 after the insertion/deletion of a hyperedge. Our algorithm fixes
these nodes by changing their levels, which may lead to new violations, and so on and
so forth. To describe the algorithm, we need to define certain states of the nodes.

Definition 2.5 A node v ∈ V is Down- Dirty iff �(v) > 0 and Wv ≤ 1/(αβ2). A
node v ∈ V is Up- Dirty iff either {�(v) = 0,Wv > 1/β2} or {�(v) > 0,Wv ≥ 1}.
A node is Dirty if it is either Down- Dirty or Up- Dirty.

A node that is not Dirty is Clean. Invariant 2.2 is satisfied if and only if no node is
Dirty. Whenever a node becomes Dirty, we use one of two subroutines to fix the

123

1064 Algorithmica (2020) 82:1057–1080

node, i.e., to make it clean. However, for the running time analysis to go through, we
need that the weight of node v after it was fixed has a “slack” (or gap) both with regard
to the upper and the lower bound of the allowed weight. More specifically, right after
a node v was fixed, it holds that 1/β2 < Wv ≤ 1/β. But this fact alone still does not
suffice to achieve constant running time. Instead we show that when a node was fixed
by one of our subroutines, an even stronger condition is fulfilled, and we call a node
fulfilling that condition to be a Super- Clean node.

Definition 2.6 Anode v ∈ V isSuper- Clean iff one of the following conditions hold:
(1) We have �(v) = 0 and Wv ≤ 1/β2, or (2) We have �(v) > 0, 1/β2 < Wv ≤ 1/β,
and W+

v ≤ 1/β2.

Note that a Super- Clean node v with �(v) > 0 fulfills a stronger upper bound on
the weight Wv then a Clean node and additionally it fulfills an upper bound on the
up-weight W+

v .

Data Structures For all nodes v ∈ V and levels i ∈ {0, 1, . . . , L}, let Ev,i := {e ∈
Ev : �(e) = i} denote the set of hyperedges incident on v that are at level i . Note that
Ev,i = ∅ for all i < �(v). We will maintain the following data structures.

1. For every level i ∈ {0, 1, . . . , L} and node v ∈ V , we store the set of hyperedges
Ev,i as a doubly linked list, and also maintain a counter that stores the number of
hyperedges in Ev,i .

2. For every node v ∈ V , we store the weights Wv and W+
v , its level �(v) and an

indicator variable for each of the states Down- Dirty, Up- Dirty, Dirty and
Super- Clean.

3. For each hyperedge e ∈ E , we store the values of its level �(e) and therefore its
weight w(e). Finally, using appropriate pointers, we ensure that a hyperedge can
be inserted into or deleted from any given linked list in constant time.

We now state two lemmata that will be useful in analysing the update time of our
algorithm.

Lemma 2.7 Suppose that a node v is currently at level �(v) = i ∈ [0, L − 1] and we
want tomove it to some level j ∈ [i+1, L]. Then it takes O(f ·|{e ∈ Ev : �v(e) < j}|)
time to update the relevant data structures.

Proof If a hyperedge e is not incident on the node v, then the data structures associated
with e are not affected as v moves up from level i to level j . Further, among the
hyperedges e ∈ Ev , only the ones with �v(e) < j get affected (i.e., the data structures
associated with them need to be changed) as v moves up from level i to level j . Note
that just before the node v moves up from level i to level j , the set of hyperedges
e ∈ Ev with �v(e) < j is given by

⋃ j−1
k=i Ev,i . This holds since i < j . Finally, for

every hyperedge that gets affected, we need to spend O(f) time to update the data
structures for its f endpoints. 	

Lemma 2.8 Suppose that a node v is currently at level �(v) = i ∈ [1, L] and we want
to move it down to some level j ∈ [0, i−1]. Then it takes O(f ·|{e ∈ Ev : �v(e) ≤ i}|)
time to update the relevant data structures.

123

Algorithmica (2020) 82:1057–1080 1065

Fig. 1 FIX-DIRTY(·)

Proof If a hyperedge e is not adjacent to the node v, then the data structures associated
with e are not affected as v moves down from level i to level j . Further, among the
hyperedges e ∈ Ev , only the ones with �v(e) ≤ i get affected (i.e., the data structures
associated with them need to be changed) as v moves down from level i to level j .
Finally, for every hyperedge that gets affected, we need to spend O(f) time to update
the data structures for its f endpoints. 	

3 The algorithm: Handling the Insertion/Deletion of a Hyperedge

Initially, the graph G is empty, every node is at level 0, and Invariant 2.2 holds.
By induction, we will ensure that the following property is satisfied just before the
insertion/deletion of a hyperedge.

Property 3.1 No node v ∈ V is Dirty.

Insertion of a hyperedge e When a hyperedge e is inserted into the input graph, it is
assigned a level �(e) = maxv∈e �(v) and a weight w(e) = β−�(e). The hyperedge gets
inserted into the linked lists Ev,�(e) for all nodes v ∈ e. Furthermore, for every node
v ∈ e, the weights Wv increases by w(e). For every endpoint v ∈ e, if �(v) < �(e),
then the weight W+

v increases by w(e). As a result of these operations, one or more
endpoints of e can now become Up- Dirty and Property 3.1 might no longer be
satisfied. Hence, in order to restore Property 3.1 we call the subroutine described in
Fig. 1.

Deletion of a hyperedge eWhen a hyperedge e is deleted from the input graph,we erase
all the data structures associated with it. We remove the hyperedge from the linked
lists Ev,�(e) for all v ∈ e, and erase the values w(e) and �(e). For every node v ∈ e,
the weight Wv decreases by w(e). Further, for every endpoint v ∈ e, if �(v) < �(e),
then we decrease the weightW+

v byw(e). As a result of these operations, one or more
endpoints of e can now become Down- Dirty, and Property 3.1 might get violated.
Hence, in order to restore Property 3.1 we call the subroutine described in Fig. 1.
The algorithm is simple – as long as someDirty node remains, it runs either FIX-UP-
DIRTY or FIX-DOWN-DIRTY to take care of Up- Dirty and Down- Dirty nodes
respectively. One crucial aspect is that we prioritize Up- Dirty nodes over Down-
Dirty ones as it allows us to upper bound the weight of every node by 2, since any
individual weight increase increases the weight of a node by at most 1 and the call
FIX-UP-DIRTY does not increase the weight of any node, while FIX-DOWN-DIRTY
might do so. Thus, as long as we are fixing Up- Dirty nodes as soon as they become

123

1066 Algorithmica (2020) 82:1057–1080

Up- Dirty, no node will ever have weight 2 or larger, a fact that we will exploit in the
running time analysis.
FIX-DOWN-DIRTY (v) Suppose that �(v) = i when the subroutine is called at time t .
By definition, we have i > 0 and Wv(t) ≤ 1/(αβ2). We need to increase the value of
Wv if we want to ensure that v no longer remains Dirty. This means that we should
decrease the level of v, so that some of the hyperedges incident on v can increase their
weights. Accordingly, we find the largest possible level j ∈ {1, . . . , (i −1)} such that
Wv→ j (t) > 1/β2, and move the node v down to this level j . If no such level exists,
that is, if even Wv→1(t) ≤ 1/β2, then we move the node v down to level 0. Note
that in this case there is no hyperedge e ∈ Ev with �v(e) = 0 for such a hyperedge
would have w(e) = β−1 > 1/β2 when v is moved to level 1. In particular, we get
Wv→0(t) = Wv→1(t).

Claim 3.2 FIX- DOWN- DIRTY(v) makes the node v Super- Clean .

Proof Suppose node v was at level i when FIX-DOWN-DIRTY(v) was called at time
t and it ended up in level j < i . If j = 0, then Wv→0(t) ≤ 1/β2, and so v becomes
Super- Clean after time t . Henceforth assume j > 0. Since j ∈ {1, . . . , i − 1} is the
maximum level where Wv→ j (t) > 1/β2, we have Wv→(j+1)(t) ≤ 1/β2. Now note
thatWv→ j (t) ≤ β ·Wv→(j+1)(t) since weights of hyperedges can increase by at most
a factor β when one end point drops exactly one level. This implies Wv→ j (t) ≤ 1/β.
Together we get that after time t when v is fixed to level j , we have 1/β2 < Wv ≤ 1/β.

Now we argue about the up-weights. Note that every hyperedge e that contributes
to W+

v→ j (t) must have �v(e) ≥ (j + 1). The weight of such a hyperedge remains

unchanged asvmoves from level (j+1) to j .We infer thatW+
v→ j (t) ≤ Wv→(j+1)(t) ≤

1/β2. Therefore after time t when v is fixed at level j , we have W+
v ≤ 1/β2. In sum,

v becomes Super- Clean after time t . 	

FIX-UP-DIRTY (v) Suppose that �(v) = i when the subroutine is called at time t . At
this stage, we have either {i = 0,Wv(t) > 1/β2} or {i > 1,Wv(t) ≥ 1}. We need to
increase the level of v so as to reduce the weight faced by it. Accordingly, we find the
smallest possible level j ∈ {i + 1, . . . , L} where Wv→ j (t) ≤ 1/β and move v up to
level j . Such a level j always exists because Wv→L(t) ≤ n f · β−L ≤ 1/β.

Claim 3.3 After a call to the subroutine FIX- DOWN- DIRTY(v) at time t, we have
1/β2 < Wv ≤ 1/β.

Proof Suppose that the node v moves up from level i to level j > i . We now consider
four possible cases.

• Case 1. We have i > 0.
Since j ∈ {i + 1, . . . , L} is the minimum possible level where Wv→ j (t) ≤ 1/β,
and since Wv→i (t) ≥ 1 > 1/β, we infer that Wv→(j−1)(t) > 1/β. As the node v

moves up from level (j − 1) to level j , the weight it faces can drop by at most a
factor of β. Hence, we get: Wv→ j (t) ≥ (1/β) · Wv→(j−1)(t) > 1/β2. Therefore
after time t when the node v moves to level j , we have 1/β2 < Wv ≤ 1/β.

• Case 2. We have i = 0, and there is an edge e ∈ Ev with �v(e) = 0 at time t .In this
case we have Wv→i (t) ≥ 1 in the beginning of time-step t , since the edge e ∈ Ev

with �v(e) = 0 has weight w(e) = 1. The rest of the proof is similar to Case 1.

123

Algorithmica (2020) 82:1057–1080 1067

• Case 3. We have i = 0, there is no edge e ∈ Ev with �v(e) = 0 at time t , and
j = 1.
The value of Wv does not change as v moves up from level i = 0 to level j = 1.
Thus, we get: Wv→ j (t) = Wv→0(t) > 1/β2, for the node v is Up- Dirty at level
i = 0 at time t . Since the node does not move further up than level j , we get:
Wv→ j (t) ≤ 1/β.

• Case 4. We have i = 0, there is no edge e ∈ Ev with �v(e) = 0 at time t , and
j > 1.
Since the node v does not stop at level 1, we get: Wv→1(t) > 1/β. Hence, we
infer that j ∈ {2, . . . , L} is the minimum possible level where Wv→ j (t) ≤ 1/β.
Since the node v had to rise above level j − 1, we infer that Wv→(j−1)(t) > 1/β.
Next, since the weight of the node v can drop by at most a factor of β when it rises
from level j − 1 to level j , we get: Wv→ j (t) ≥ (1/β) · Wv→(j−1)(t) > 1/β2.
Therefore, we have 1/β2 < Wv→ j (t) ≤ 1/β. 	

It is clear that if and when FIX-DIRTY() terminates, we are in a state which sat-

isfies Invariant 2.2. In the next section we show that after T hyperedge insertions
and deletions, the total update time is indeed O(f 2 · T) and so our algorithm has
O(f 2)-amortized update time.

4 Analysis of the Algorithm

Starting from an empty graph G = (V , E), fix any sequence of T updates. The term
“update” refers to the insertion or deletion of a hyperedge in G . We show that the total
time taken by our algorithm to handle this sequence of updates is O(f 2 · T). We also
show that our algorithm has an approximation ratio of O(f 3).

Relevant Counters We define three counters Cup,Cdown and I down . The first two
counters account for the time taken to update the data structureswhile the third accounts
for the time taken to find the index j in both FIX-DOWN-DIRTY(v) and FIX-UP-
DIRTY(v). Initially, when the input graph is empty, all the three counters are set to
zero. Subsequently, we increment these counters as follows.

1. Suppose node v moves from level i to level j > i upon a call of FIX-UP-
DIRTY(v). Then for every hyperedge e ∈ Ev with �v(e) ≤ j − 1, we increment
Cup by one.

2. Suppose node v moves from level i to level j < i upon a call of FIX-DOWN-
DIRTY(v). Then for every hyperedge e ∈ Ev with �v(e) ≤ i , we increment the
value ofCdown by one. Furthermore, we increment the value of I down by β i−2/α.

Remark We will see in Sect. 4.5 that the time complexity of finding the appropriate
index j during FIX-UP-DIRTY is subsumed by the increment in I down during FIX-
DOWN-DIRTY (we will crucially exploit the fact that each sequence of up moves
will be followed by a down move since the final graph is empty graph).

We now explain why we increment I down during a call to FIX-DOWN-DIRTY
which moves a node v down from level i to level j < i . Note that in order to compute

123

1068 Algorithmica (2020) 82:1057–1080

the new level of v, it suffices to process all the hyperedges whose other endpoints are
at levels ≤ i . Each of these hyperedges has weight β−i . Furthermore, given that the
node was down-dirty, its current weight is less than 1/(β2α). Hence, the number of
hyperedges we need to scan to find the level j is upper bounded by β i−2/α.

The next lemma upper bounds the total time taken by our algorithm in terms of the
values of these counters. The proof of Lemma 4.1 appears in Sect. 4.5.

Lemma 4.1 Our algorithm takes�(f ·(Cup+Cdown +T)+ f 2 I down) time to handle
a sequence of T updates.

We will show that Cup = �(f) · T and Cdown + I down = O(1) · T , which will
imply an amortized update time of O(f 2) for our algorithm. Towards this end, we
now prove three lemmata that relate the values of these three counters. The proofs can
be found in the next subsections.

The first lemma follows immediately from the fact that at most β i−2/α edges fulfill
the condition �v(e) ≤ i when node v moves down, and thus, I down is incremented by
at most as much as Cdown .

Lemma 4.2 We have: Cdown ≤ I down.

The next lemma exploits the gap between the weight when a node v reaches a level
i and when v moves down: When v is placed on level i we have Wv > 1/β2, when
it is Down- Dirty it holds that Wv ≤ 1/(αβ2). This “slack” suffices to upper bound
I down by a function linear in T andCup. Thus, this proof compares the weight of node
v at the beginning and at the end of a time interval during which v remains at the same
level. Note that we picked α such that the constant is much smaller than 1 and even a
function of 1/ f .

Lemma 4.3 We have: I down ≤ f
α−1 · (T + Cup).

Note that when in prior work such as [7] the “slack” was exploited by comparing
the weight of v at two different points in time, node v had to be at the same level
from time t1 on until time t and the whole weight of v on this level was used in the
comparison.

In order to prove the next lemma we compares the weight of v at two points in time
even though v is at different levels at these points in time. More specifically, we use
the following new three ideas:

(1) We break, for each node v, the sequence of operations into subsequences and
then argue over a maximal subsequence of operations during which the level of
v only increases, called phase. When we compare the weight of v, we use as t1
the beginning of the phase and as t a later point in time during the phase. Thus, v
will be t different levels at these points in time. (Note that both the definition of a
phase and its subintervals, called epochs, are different from the epochs introduced
in [22].)

(2) We use a reference level i∗, on which v might never be during the phase and
compare the weight of v at time t1 if it were at a level i∗ with the weight of v if it
were at level i∗ at time t .

123

Algorithmica (2020) 82:1057–1080 1069

(3) In this comparison we use, however, not the complete weight of v, but only the
weight of v to upper levels, i.e. we use the weightW+

v→i∗ . When doing so, we use
the strong properties that are guaranteed by the Super- Clean state.

These ideas enable us finally to upper bound Cup by a function linear in T and
Cdown .

Lemma 4.4 We have: Cup ≤ 7 f β2 · (T + Cdown).

The proofs of lemmata 4.2, 4.3 and 4.4 appear in Sects. 4.2, 4.3 and 4.4 respectively,
using the concepts of epochs, jumps and phases which are defined in Sect. 4.1. When
combining their statements we can upper bound all three counters by a function that is
linear in T , which was our goal, as it shows that the number of edges that are updated
during all calls to FIX-DOWN-DIRTY and FIX-UP-DIRTY is linear in the number
of update operations in the graph.

Lemma 4.5 (Corollary to Lemma 4.2,4.3, and 4.4.) We have: Cup = �(f) · T and
Cdown + I down = �(1) · T .
Proof Replacing Cdown in the RHS of Lemma 4.4 by the upper bounds from lem-
mata 4.2 and 4.3, we get:

Cup ≤ (7 f β2) · T + (7 f β2) · Cdown

≤ (7 f β2) · T + (7 f β2) · I down

≤ (7 f β2) · T + (7 f β2) f

(α − 1)
· (T + Cup)

≤ (7 f β2) · T + (1/4) · T + (1/4) · Cup (see equation (1))

Rearranging the terms in the above inequality,we get: (3/4)·Cup ≤ (7 f β2+1/4)·T =
(28 f β2 + 1) · (T /4). Multiplying both sides by (4/3), we get: Cup ≤ (28 f β2/3 +
1/3) · T ≤ (10 f β2)T . Since β = 6, we get:

Cup ≤ �(f) · T (2)

Since α = �(f 2), lemmata 4.2 and 4.3 and Eq. (2) imply that:

Cdown ≤ I down ≤ �(1) · T (3)

	

The main result of our paper (see Theorem 2.1) now follows from Theorem 2.4,

Lemma 4.1 and Lemma 4.5.

4.1 Epochs, Jumps and Phases

Fix any node v ∈ V . An epoch of this node is a maximal time-interval during which
the node stays at the same level. An epoch ends when either (a) the node v moves

123

1070 Algorithmica (2020) 82:1057–1080

up to a higher level due to a call to FIX-UP-DIRTY, or (b) the node v moves down
to a lower level due to a call to the subroutine FIX-DOWN-DIRTY. These events are
called jumps. Accordingly, there are Up- Jumps and Down- Jumps. Next, we define a
phase of a node to be a maximal sequence of at least two consecutive epochs where
the level of v keeps on increasing, i.e., where all but the last epoch end in an Up-
Jump. We use 	v to denote a phase of a node v and we will analyse each such
phase. Suppose that a phase 	v consists of k > 1 consecutive epochs of v at levels
i1, . . . , ik ∈ {0, 1, . . . , L}. Then we have: i1 < i2 < · · · < ik . By definition, the
epoch immediately before 	v must have level larger than i1 implying FIX-DOWN-
DIRTY(v) landed v at level i1. Similarly, the epoch subsequent to ik is smaller than
ik implying FIX-DOWN-DIRTY(v) is called again.

4.2 Proof of Lemma 4.2

Suppose that a node v moves down from level i to level j < i at time t due to a call
to the subroutine FIX-DOWN-DIRTY(v). Let
down and
down

I respectively denote
the increase in the counters Cdown and I down due to this event. We will show that

down ≤
down

I , which will conclude the proof of the lemma. By definition, we have:

down
I = β i−2/α (4)

Let X = {e ∈ Ev : �v(e) ≤ i} denote the set of hyperedges incident on v that
contribute to the increase in Cdown due to the Down- Jump of v at time t . Note that if
a hyperedge e belongs to the set X , then it must be the case that �v(e) = i . Specifically,
we have: |X | =
down . Each edge e ∈ X contributes a weight β−i towards the node-
weight Wv→i (t). Thus, we get: |X | · β−i ≤ Wv→i (t) ≤ 1/(αβ2). The last inequality
holds since v is Down- Dirty in the beginning of time-step t . Rearranging the terms,
we get:
down = |X | ≤ β i−2/α. The lemma now follows from Eq. (4).

4.3 Proof of Lemma 4.3

Suppose we call FIX-DOWN-DIRTY(v) at some time t2. Let �(v) = i just before the
call, and let [t1, t2] be the epoch with level of v being i . Let X := {e ∈ Ev : �v(e) ≤ i}
at time t2. By definition, I down increases by β i−2/α during the execution of FIX-
DOWN-DIRTY(v); let us call this increase
down

I . Thus, we have:

down
I = β i−2/α (5)

Consider the time between [t1, t2] and let us address how Wv can decrease in this
time while v’s level is fixed at i . Either some hyperedge incident on v is deleted, or
some hyperedge e ∈ Ev incident on it decreases its weight. In the latter case, the
level �(e) of such an hyperedge e must increase above i . Let
T denote the number
of hyperedge deletions incident on v during the time-interval [t1, t2]. Let
up denote
the increase in the value of Cup during the time-interval [t1, t2] due to the hyperedges
incident on v. Specifically, at time t1, we have
T =
up = 0. Subsequently, during

123

Algorithmica (2020) 82:1057–1080 1071

the time-interval [t1, t2], we increase the value of
up by one each time we observe
that a hyperedge e ∈ Ev increases its level �(e) to something larger than i . Note that
�(v) = i throughout the time-interval [t1, t2]. Hence, each time we observe an unit
increase in
T +
up, this decreases the value of Wv by at most β−i . Just before
time t1, the node v made either an Up- Jump, or a Down- Jump. Hence, Claims 3.3
and 3.2 imply that Wv→i (t1) > 1/β2. As Wv(t2) ≤ 1/(αβ2) at time t2, we infer that
Wv has dropped by at least (1 − 1/α) · β−2 during the time-interval [t1, t2]. In order
to account for this drop in Wv , the value of
T +
up must have increased by at least
(1 − 1/α) · β−2/β−i = (1 − 1/α) · β i−2. Since
T =
up = 0 at time t1, at time t2
we get:
T +
up ≥ (1 − 1/α) · β i−2. Hence, (5) gives us:

down
I ≤ (α − 1)−1 · (
T +
up) (6)

Each time the value of I down increases due to FIX-DOWN-DIRTY on some node,
inequality (6) applies. If we sum all these inequalities for all nodes v, then the left
hand side (LHS) will be exactly equal to the final value of I down , and the right hand
side (RHS) will be at most (α −1)−1 · (f ·T + (f −1) ·Cup). The factor f appears in
front of T because each hyperedge deletion can contribute f times to the sum

∑

T ,

once for each of its endpoints. Similarly, the factor (f − 1) appears in front of Cup

because whenever the level of an hyperedge e moves up due to the increase in the
level �(v) of some endpoint v ∈ e, this contributes at most (f − 1) times to the sum∑

up, once for every other endpoint u ∈ e, u �= v. Since LHS ≤ RHS, we get:
I down ≤ (α − 1)−1 · (f · T + (f − 1) · Cup) ≤ (f /(α − 1)) · (T + Cup). This
concludes the proof of the lemma.

4.4 Proof of Lemma 4.4

To upper bound Cup by a function linear in T and Cdown we analyse the increase in
Cup caused by each node v and each phase of v individually. Thus, we first need to
define suitable variables. Fix a node v and consider a phase 	v where v goes through
levels i1 < i2 < · · · < ik . Thus, the node v enters the level i1 at time t1 (say) due to
a call to FIX-DOWN-DIRTY(v). For r ∈ [2, k], the node v performs an Up- Jump at
time tr (say) from the level ir−1 to the level ir , due to a call to FIX-UP-DIRTY(v).
This implies that t1 < t2 < · · · < tk . The phase ends, say, at time tk+1 > tk when the
node v again performs a Down- Jump from the level ik due to a call to FIX-DOWN-
DIRTY(v). As we will argue in this proof about the weight of v at various levels we
use the notation Wv→i1(t1) to denote the weight of v on level i1 at time t1 as this
notation clearly shows the three parameters that the weight depends on (v, i1, and t1),
even if we could simply use Wv(t1) if the level of v at time t1 is i1.

Let
up denote the total increase in the value of the counter Cup during the phase
	v , that happens because of the node v. For r ∈ [2, k], let
up

r denote the increase in
the value of the counter Cup due to the Up- Jump of v at time tr . Thus, we have:

up =
k∑

r=2

up
r (7)

123

1072 Algorithmica (2020) 82:1057–1080

We define two more counters:
T ,
down . The former counter equals the number
of hyperedge insertions/deletions incident on v during the time-interval [t1, tk]. The
latter counter equals the increase in the value of Cdown due to the hyperedges incident
on v during the time-interval [t1, tk]. Thus,
T and
down are functions of v, t1 and tk ,
but we omit these parameters to simplify the notation in this proof. (Alternately, these
two counters can be defined as follows. At time t1, we set
T ← 0 and
down ← 0.
Subsequently, whenever at any time t ∈ [t1, tk], a hyperedge incident on v gets inserted
into or deleted from the input graph, we increment the value of
T by one. Further,
whenever at any time t ∈ [t1, tk], a hyperedge e incident on v gets its level decreased
because of a Down- Jump of some node u ∈ e, u �= v, we increment the value of

down by one.)

Before proceeding with the proof we first state a crucial property ofWv→i1(t1) that
we will use repeatedly below. Since v enters the level i1 at time t1 due to a call to
FIX-DOWN-DIRTY(v), Claim 3.2 implies that the node v is Super- Clean at level
i1 at time t1.We now recall the definition of a Super- Clean node fromDefinition 2.6.
There are two cases to consider, depending on the value of i1.

Case 1. i1 > 0. In this case, Definition 2.6 implies that Wv→i1(t1) ≤ 1/β and
W+

v→i1
(t1) ≤ 1/β2.

Case 2. i1 = 0. In this case, Definition 2.6 implies that Wv→i1(t1) ≤ 1/β2 ≤ 1/β.
Furthermore, Definition 2.6 also implies that W+

v→i1
(t1) ≤ Wv→i1(t1) ≤ 1/β2.

We therefore obtain the following strict bounds on Wv:

Wv→i1(t1) ≤ 1/β and W+
v→i1

(t1) ≤ 1/β2 (8)

Our main goal is to upper bound
up in terms of the final values of the counters

T and
down . To achieve this we upper bound in the next claim

up
r by β ir−1 and in

the following claim we lower bound
T +
down by a function of β ir−1. In the proof
of the next claim we use the fact that we have an upper bound of 1/β on Wv right
after an Up- Jump and we know the exact weight of all edges that contribute to

up
r

for the Up- Jump. As these edges also contribute to Wv→ir (tr + 1), the upper bound
to Wv→ir (tr + 1) bounds the number of such edges and thus

up
r .

Claim 4.6 For 2 ≤ r ≤ k,
up
r ≤ β ir−1.

Proof By Claim 3.3 we have Wv→ir (tr + 1) ≤ 1/β, that is, the total weight incident
on v after it has gone through FIX-UP-DIRTY at time tr is at most 1/β. Now, each
hyperedge e ∈ Ev which contributes to

up
r has weight, right after time tr , precisely

β−�(v) = β−ir . As

up
r · β−ir ≤ Wv→ir (tr + 1) ≤ 1/β, we get
up

r ≤ β ir−1. 	

Using the slack provided by Eq. (8) and the fact that v performs anUp- Jump at time

tk−1 we can lower bound the increase in Wv→ik−1 during the time interval [t1, tk] by
(1− 1/β). As this weight increase can only happen through insertions of hyperedges
incident to v or hyperedges incident to v increasing their weights, and each such event
increases the weight of v by at most β−ik−1 , we can lower bound the sum
T +
down

by β ik−1/2. Combining this lower bound with the preceeding claim shows the desired
upper bound on the sum of all but the last
up

k by a linear function of
T +
down .

123

Algorithmica (2020) 82:1057–1080 1073

Claim 4.7 For k > 2 we have
T +
down > β ik−1/2 and for k > 1 we have∑k−1
r=2

up
r < 2(
T +
down).

Proof If k = 2, then we have an empty sum
∑k−1

r=2

up
r = 0, and hence the claim is

trivially true.
For the rest of the proof, we suppose that k > 2, which implies that ik−1 ≥ i2 >

i1 ≥ 0. Thus, we get:
k > 2 and ik−1 > 0. (9)

Summing over the inequalities from Claim 4.6, we get:

k−1∑

r=2

up
r ≤ β ik−1 (10)

Since the node v performs an Up- Jump at time tk−1 from level ik−1 > 0 (see
Eq. (9)), the node must be Up- Dirty at that time. It follows that Wv→ik−1(tk) > 1.
From Eq. (8), we have Wv→ik−1(t1) ≤ Wv→i1(t1) < 1/β. Thus, during the time
interval [t1, tk] the value ofWv→ik−1 increases by at least (1−1/β). This can be either
due to (a) some hyperedge incident to v being inserted, or (b) some hyperedge e ∈ Ev

gaining its weight because of some endpoint u ∈ e, u �= v, going down. The former
increases
T and the latter increases
down . Furthermore, the increase inWv→ik−1 due
to every such hyperedge is at most β−ik−1 . This gives us the following lower bounds:

T +
down ≥ (1 − 1/β) · β ik−1 > β ik−1/2 and, with equation (10),
k−1∑

r=2

up
r < 2(
T +
down) (11)

The claim follows from Eq. (11). 	

It now remains to upper bound

up
k . This is done in Claim 4.8, whose proof appears

in Sect. 4.4.1.

Claim 4.8 We have:

up
k < (6β2) · (
T +
down).

Putting it all together from Eqs. 1, 7 and Claims 4.7, 4.8, we get:

up ≤ (6β2 + 2)(
T +
down) ≤ (7β2) · (
T +
down) (12)

Using Eq. (12), now we can prove Lemma 4.4. For every phase of a node v, as per
Eq. (12)we can charge the increase inCup to the increase in (T+Cdown) corresponding
to hyperedges incident of v. Summing up over all nodes and phases, the LHS gives
Cup while the RHS gives (9β2) · (f ·T + (f −1) ·Cdown). The coefficient f before T
comes from the fact that every hyperedge insertion can contribute f times to the RHS,
once for each of its endpoints. The coefficient (f − 1) before Cdown comes from the
fact that whenever the level of a hyperedge e decreases due to the Down- Jump of a

123

1074 Algorithmica (2020) 82:1057–1080

node u ∈ e, this event contributes at most (f − 1) times to the RHS: once for every
other endpoint v ∈ e, v �= u. Thus, we get:

Cup ≤ (7β2) · (f · T + (f − 1) · Cdown) ≤ 7 f β2 · (T + Cdown)

4.4.1 Proof of Claim 4.8

To prove an upper bound of 6β2) · (
T +
down) for

up
k we consider two cases. One

case arises if levels ik and ik−1 are “close”, the other one when they are far. The first
case follows the proof pattern of Claim 4.7, which showed the bound for

up
k−1. This

is possible since the weight of edges contributing to

up
k are within β3 of the weight

of edges contributing to

up
k−1 as ik and ik−1 are “close”. Thus, the same arguments as

in Claim 4.7 can be used to show the desired bound for

up
k . If, however, ik and ik−1

are far, a new approach is needed, which we will explain in Case 2 below.

Case 1: ik ≤ ik−1 + 3.
Since ik ≤ ik−1 + 3, Claim 4.6 implies that:

up
k ≤ β ik−1 ≤ β ik−1 · β2 (13)

In the proof of Claim 4.7, we derived Eq. (11), which gives us:

T +
down ≥ β ik−1/2 (14)

Equations 13, 14 imply that
up
k < 2β2 · (
T +
down) ≤ 6β2 · (
T +
down). This

concludes the proof of Claim 4.8 for this case.

Case 2: ik > ik−1 + 3.
The proof in this case consists of three steps:

(1) First we show that at any point in time the weight of any node is less than 2. This
holds due to our subroutine FIX-DIRTY.

(2) Using this upper bound onWv show thatW+
v→(ik−3)(tk) > 1/(2β). It is interesting

that we can show this bound, even though v is not at level ik − 3 at time tk . We
show that claim by contradiction: If that weight were at most 1/(2β), then the
weight of v on level ik − 1 were less than 1/β, since, as we show, the difference
betweenWv→(ik−1)(tk) andW

+
v→(ik−3)(tk) is at most 2/β2. But then theUp- jump

would have placed v on level ik − 1 and not on level ik .
(3) Using the previous boundwe show thatW+

v→(ik−3) increases from t1 to tk by at least

1/(2β) − 1/β2. Here we use the fact that v was Super- Clean at time t1, which
implies that W+

v→i1
(t1) ≤ 1/β2 and the fact that W+

v→(ik−3)(t1) ≤ W+
v→i1

(t1). In
previous situations there were two reasons why the weight of v increased over
a certain time interval, one of them can be contributed to an increase in
T and
the other to an increase in
down . Here, however, there are three such cases and
the third one can neither be contributed to an increase in
T nor to an increase
in
down . However, we can show that all events of the third type can lead to an
increase of W+

v→(ik−3) of at most 1/β2 during the time interval [t1, tk]. Thus, at

123

Algorithmica (2020) 82:1057–1080 1075

least 1/(2β) − 2/β2 of the increase of W+
v→(ik−3) can be contributed to either an

increase in
T or an increase in
down and the same arguments at in 4.7 show
the desired bound.

We start by noting that the weight of a node is always less than 2 at every time.

Claim 4.9 We have: Wv(t) < 2 at every time t.

Proof The crucial observation is that fixing an Up- Dirty node u never increases the
weight of any node. Furthermore, a Down- Dirty node gets fixed only if no other
node is Up- Dirty (see Fig. 1).

In the beginning of time-step t = 0, the input graph is empty, and we clearly have
Wv(t) = 0 < 1. By induction, suppose that Wv(t) < 1 in the beginning of some
time-step t . Now, during time-step t , the weight Wv can increase only if one of the
following events occur:

• A hyperedge containing v gets inserted into the graph. This increases the value of
Wv by at most one. Thus, we have Wv(t + 1) < 2.

• We call the subroutine FIX-DOWN-DIRTY(u) for some node u. Note that fixing
aDown- Dirty node u can increase the weightWu by at most one, and hence this
can increase the weight of a neighbour of u also by at most one. It again follows
that Wv(t + 1) < 2.

If Wv(t + 1) < 1, then we are back in the same situation as in time-step t . Otherwise,
if 1 ≤ Wv(t + 1) < 2, then v is Up- Dirty in the beginning of time-step t + 1. In
this case, no Down- Dirty node gets fixed (and no hyperedge gets inserted) until we
ensure that Wv becomes smaller than one. Hence, the value of Wv always remains
smaller than 2. 	

Claim 4.10 We have: W+

v→(ik−3)(tk) > 1/(2β).

Proof Suppose that the claim does not hold. Then we get:

Wv→(ik−1)(tk) ≤ W+
v→(ik−3)(tk) + Wv→(ik−3)(tk) − W+

v→(ik−3)(tk)

β2

≤ 1/(2β) + 2/β2 ≤ 1/β (15)

The first inequality holds since the weights of the hyperedges e ∈ Ev with �v(e) ≤
ik − 3 get scaled by at least a factor of 1/β2 when v moves from level ik − 3 to ik − 1,
and the rest can only go down. The second inequality holds since Wv→(ik−3)(tk) ≤
Wv→ik−1(tk) < 2 by Claim 4.9 and the assumption W+

v→(ik−3)(tk) ≤ 1/(2β). The last
inequality holds since β = 6 by Eq. (1).

Note, however, thatWv→(ik−1)(tk) > 1/β, since node v does not stop at level ik −1
while making the Up- Jump at time tk . Thus, assuming that the claim does not hold
leads to a contradiction. 	

Claim 4.10 states that W+
v→(ik−3)(tk) > 1/(2β). Since ik−1 < ik − 3, Eq. (8)

implies that W+
v→(ik−3)(t1) ≤ W+

v→ik−1
(t1) ≤ W+

v→i1
(t1) ≤ 1/β2. Thus during the

123

1076 Algorithmica (2020) 82:1057–1080

time-interval [t1, tk], the value ofW+
v→(ik−3) increases by at least 1/(2β)−1/β2. This

increase can occur in three ways:

1. a hyperedge e ∈ Ev is inserted with �v(e) > ik − 3 before the Up- Jump at time
tk (which contributes to
T),

2. some hyperedge e ∈ Ev gains weight due to a Down- Jump of some node (say)
u ∈ e, u �= v, and �v(e) > ik − 3 after the Down- Jump (which contributes to

down), and

3. some hyperedge e ∈ Ev had �v(e) ≤ ik − 3 at t1 (i.e. does not contribute to
W+

v→(ik−3)(t1)) but �v(e) > ik − 3 at tk (i.e. contributes to W+
v→(ik−3)(tk)).

Note that the total weight of the hyperedges of type (3) at time t1 incident on v at
level ik − 3 is at most 1/β; this follows from (8). Therefore, when �v(e) for such an
edge e raises to > ik − 3, the weight decreases by at least a 1/β factor. Hence the
total increase inW+

v→(ik−3) due to type (3) hyperedges is at most 1/β2, and the weight

increase of at least 1/(2β) − 2/β2 must come from hyperedges of type (1) and type
(2). However each such hyperedge e can contribute at most β−(ik−2) to the weight
(since �v(e) > ik − 3). And therefore, we get (recall that β = 6 by Eq. (1)):

(

T +
down

)
· β−(ik−2) ≥ 1

2β
− 2

β2

= 1

6β
implying

(

T +
down

)
≥ β ik−1

6β2

Claim 4.6 gives

up
k ≤ β ik−1, and therefore we get:

up
k ≤ 6β2

(

T +
down

)
(16)

This concludes the proof of Claim 4.8 for this case.

4.5 Proof of Lemma 4.1

For technical reasons, we assume that we end with the empty graph as well. This is
without loss of generality due to the following reason. Suppose we made T updates
and the current graph is G. At this point, the graph has T ′ ≤ T edges. Suppose the
time taken by our algorithm till now is T1. Now delete all the T ′ edges, and let the
time taken by our algorithm to take care of these T ′ updates be T2. If T1 + T2 =
�(f 2(T + T ′)) = �(f 2T), then T1 = �(T) as well. Therefore, we assume that the
process ends with an empty graph.

When a hyperedge e is inserted into or deleted from the graph, we take O(f) time
to update the relevant data structures for its f endpoints. The rest of the time is spent in
implementing theWhile loop in Fig. 1.We take care of the two subroutines separately.

Case 1. The subroutine FIX-DOWN-DIRTY(v) is called which moves the node v

from level i to level j < i (say). We need to account for the time to find the relevant
index j and the time taken to update the relevant data structures. By Lemma 2.8, the

123

Algorithmica (2020) 82:1057–1080 1077

time taken for the latter is proportional �(f ·
Cdown), where
Cdown denotes the
increase in the value of the counter Cdown due to this event. Further, the value of Cup

remains unchanged. For finding the index j < i , it suffices to focus on the edges
Ev,i = {e ∈ Ev : �v(e) ≤ i} since these are the only edges that can potentially change
weight as v goes down. Therefore, this takes time �(|{e ∈ Ev : �v(e) ≤ i}|). Since
each of these edges had w(e) = β−i and since Wv ≤ 1

αβ2 before the FIX-DOWN-

DIRTY(v) call, we have |{e ∈ Ev : �v(e) ≤ i}| ≤ β i−2/α which is precisely
I down ,
where
I down is the increase in the value of the counter I down due to this event.
Therefore, the time taken to find the index j is �(
I down).

Case 2. The subroutine FIX-UP-DIRTY(v) is called which moves the node v from
level i to level j > i , say. Once again, we need to account for the time to find the
relevant index j and the time taken to update the relevant data structures, and once
again by Lemma 2.7 the time taken for the latter is �(f ·
Cup). Further, the value
of Cdown remains unchanged. We now account for the time taken to find the index j .

Claim 4.11 j can be found in time �(j − i).

Proof To see this note that for k ≥ i ,

Wv→k(t) =
∑

�≥k

∑

e∈Ev,�

w(e) +
∑

�<k

1

βk−�

∑

e∈Ev,�

w(e)

since (a) edges not incident on v are immaterial, (b) the edges incident on v whose
levels are already≥ k do not change their weight, and (c) edges whose levels are � < k
have their weight go from β−� to β−k . The above implies that for k ≥ i ,

Wv→(k+1)(t) = Wv→k(t) −
(

1 − 1

β

) ∑

e∈Ev,k

w(e)

= Wv→k(t) −
(

1 − 1

β

)

|Ev,k | · β−k

That is, Wv→(k+1) can be evaluated from Wv→k(t) in �(1) time since we store |Ev,k |
in our data structure. The claim follows. 	

Note that in Claim 4.11 the time taken to find the index j can be as large as�(log n).
To account for this time, we again fix a vertex v and a phase 	v where the level of v

changes from i1 to say ik . The total time for finding indices is �(ik − i1). After this,
there must be a DOWN-JUMP due to a call to FIX-DOWN-DIRTY(v) since the final
graph is empty. Thus, we can charge the time taken in finding indices in this phase 	v

to
I down in the FIX-DOWN-DIRTY(v) call right at the end of this phase. We can
do so since
I down = β ik−2/α = 1

f 2
�(ik) since β = �(1) and α = �(f 2) by (1).

Therefore, the total time taken to find indices in the FIX-UP-DIRTY(v) calls in all is
at most f 2 I down .

123

1078 Algorithmica (2020) 82:1057–1080

To summarize, the time taken to initialize and update the data structures is at most
�

(
f · (

Cup + Cdown + T
))
, and the total time taken to find indices is at most �(f 2 ·

I down). This proves Lemma 4.1.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Duality Between Maximum Fractional Matching and Minimum Ver-
tex Cover

Let yv ∈ {0, 1} be an indicator variable which denotes if the node v ∈ V is picked in
the vertex cover. The LP-relaxation for minimum vertex cover is as follows.

Minimize
∑

v∈V xv

such that:
∑

v∈e xv ≥ 1 for all e ∈ E .

xv ≥ 0 for all v ∈ V .

In the above LP, the first constraint encodes the fact that for every hyperedge we have
to pick at least one node incident on it. The dual of the above LP is the following.

Maximize
∑

e∈E ye
such that:

∑
e∈E :v∈e ye ≤ 1 for all v ∈ V .

ye ≥ 0 for all e ∈ E .

Note that the dual LP precisely encodes the maximum fractional problem: We have
to assign a weight ye ≥ 0 to every hyperedge e ∈ E in such a way that the total
weight received by any node v from all its incident hyperedges is at most 1. The goal
is to maximize the total weight assigned to all the hyperedges. Hence, the size of
the maximum fractional matching in a hypergraph is at most the size of its minimum
vertex cover.

References

1. Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for dynamic problems.
In: Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS) (2014)

2. Arar, M., Chechik, S., Cohen, S., Stein, C., Wajc, D.: Dynamic matching: reducing integral algorithms
to approximately-maximal fractional algorithms. CoRR (2017). arXiv:1711.06625

3. Baswana, S., Gupta, M., Sen, S.: Fully dynamic maximal matching in O(log n) update time. In:
Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS) (2011)

4. Bernstein, A., Stein, C.: Faster fully dynamic matchings with small approximation ratios. In: Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms (SODA) (2016)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1711.06625

Algorithmica (2020) 82:1057–1080 1079

5. Bhattacharya, S., Chakrabarty,D.,Henzinger,M.:Deterministic dynamicmatching in o(1) update time.
In: Proceedings of the MPS Symposium on Integer Programming and Combonatorial Optimization
(IPCO) (2017)

6. Bhattacharya, S., Henzinger, M., Italiano, G.F.: Design of dynamic algorithms via primal-dual method.
In: Proceedings of the International Colloquium on Automata, Languages and Programming (ICALP)
(2015)

7. Bhattacharya, S., Henzinger, M., Italiano, G.F.: Deterministic fully dynamic data structures for vertex
cover and matching. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA)
(2015)

8. Bhattacharya, S., Henzinger,M., Nanongkai, D.: New deterministic approximation algorithms for fully
dynamic matching. In: Proceedings of the ACM Symposium on Theory of Computing (STOC) (2016)

9. Bhattacharya, S., Henzinger, M., Nanongkai, D.: Fully dynamic approximate maximum matching
and minimum vertex cover in O(log3 n) worst case update time. In: Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA) (2017)

10. Bhattacharya, S., Kulkarni, J.: Deterministically maintaining a (2 + ε)-approximate minimum vertex
cover in o(1/ε2) amortized update time. In: SODA, pp. 1872–1885 (2019)

11. Bosek, B., Leniowski, D., Sankowski, P., Zych, A.: Online bipartite matching in offline time. In:
Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS) (2014)

12. Charikar, M., Solomon, S.: Fully dynamic almost-maximal matching: Breaking the polynomial barrier
for worst-case time bounds. CoRR (2017). arXiv:1711.06883

13. Gupta, A., Krishnaswamy, R., Kumar, A., Panigrahi, D.: Online and dynamic algorithms for set cover.
In: Proceedings of the ACM Symposium on Theory of Computing (STOC) (2017)

14. Gupta, M., Peng, R.: Fully dynamic (1 + ε)-approximate matchings. In: Proceedings of the IEEE
Symposium on Foundations of Computer Science (FOCS) (2013)

15. Henzinger, M., Krinninger, S., Nanongkai, D., Saranurak, T.: Unifying and strengthening hardness for
dynamic problems via the online matrix-vector multiplication conjecture. In: Proceedings of the ACM
Symposium on Theory of Computing (STOC) (2015)

16. Henzinger, M.R., Fredman, M.L.: Lower bounds for fully dynamic connectivity problems in graphs.
Algorithmica 22(3), 351–362 (1998)

17. Neiman, O., Solomon, S.: Simple deterministic algorithms for fully dynamic maximal matching. In:
Proceedings of the ACM Symposium on Theory of Computing (STOC) (2013)

18. Onak, K., Rubinfeld, R.: Maintaining a large matching and a small vertex cover. In: Proceedings of
the ACM Symposium on Theory of Computing (STOC) (2010)

19. Parter, M., Peleg, D., Solomon, S.: Local-on-average distributed tasks. In: Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms (SODA) (2016)

20. Patrascu,M.: Lower bounds for dynamic connectivity. In: Encyclopedia ofAlgorithms, pp. 1162–1167.
Springer (2016)

21. Sankowski, P.: Faster dynamic matchings and vertex connectivity. In: Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA) (2007)

22. Solomon, S.: Fully dynamic maximal matching in constant update time. In: Proceedings of the IEEE
Symposium on Foundations of Computer Science (FOCS) (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Sayan Bhattacharya1 · Deeparnab Chakrabarty2 ·Monika Henzinger3

Deeparnab Chakrabarty
deeparnab.chakrabarty@dartmouth.edu

Monika Henzinger
monika.henzinger@univie.ac.at

123

http://arxiv.org/abs/1711.06883
http://orcid.org/0000-0003-1612-0296

1080 Algorithmica (2020) 82:1057–1080

1 University of Warwick, Coventry, UK

2 Department of Computer Science, Dartmouth College, 6211 Sudikoff Lab, Hanover, NH 03755,
USA

3 University of Vienna, Wien, Austria

123

	Deterministic Dynamic Matching in O(1) Update Time
	Abstract
	1 Introduction
	1.1 Our Techniques

	2 Notations and Preliminaries
	3 The algorithm: Handling the Insertion/Deletion of a Hyperedge
	4 Analysis of the Algorithm
	4.1 Epochs, Jumps and Phases
	4.2 Proof of Lemma 4.2
	4.3 Proof of Lemma 4.3
	4.4 Proof of Lemma 4.4
	4.4.1 Proof of Claim 4.8

	4.5 Proof of Lemma 4.1

	A Duality Between Maximum Fractional Matching and Minimum Vertex Cover
	References

