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In this article, we introduce and study the Non-Uniform k-Center (NUkC) problem. Given a finite metric
space (X ,d ) and a collection of balls of radii {r1 ≥ · · · ≥ rk }, the NUkC problem is to find a placement of
their centers in the metric space and find the minimum dilation α , such that the union of balls of radius α · ri

around the ith center covers all the points in X . This problem naturally arises as a min-max vehicle routing
problem with fleets of different speeds.

The NUkC problem generalizes the classic k-center problem, wherein all the k radii are the same (which
can be assumed to be 1 after scaling). It also generalizes the k-center with outliers (kCwO for short) problem,
in which there are k balls of radius 1 and � (number of outliers) balls of radius 0. Before this work, there was a
2-approximation and 3-approximation algorithm known for these problems, respectively; the former is best
possible unless P=NP.

We first observe that noO (1)-approximation to the optimal dilation is possible unless P=NP, implying that
the NUkC problem is harder than the above two problems. Our main algorithmic result is an (O (1),O (1))-
bi-criteria approximation result: We give an O (1)-approximation to the optimal dilation; however, we may
open Θ(1) centers of each radii. Our techniques also allow us to prove a simple (uni-criterion), optimal
2-approximation to the kCwO problem improving upon the long-standing 3-factor approximation for this
problem.

Our main technical contribution is a connection between the NUkC problem and the so-called firefighter
problems on trees that have been studied recently in the TCS community. We show NUkC is at least as hard
as the firefighter problem. While we do nt know whether the converse is true, we are able to adapt ideas from
recent works [1, 3] in non-trivial ways to obtain our constant factor bi-criteria approximation.
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1 INTRODUCTION

Source location and vehicle routing problems are extremely well studied [9, 19, 23] in operations
research. Consider the following location+routing problem: We are given a set of k ambulances
with speeds s1, s2, . . . , sk , respectively, and we have to find the depot locations for these vehicles
in a metric space (X ,d ) such that any point in the space can be served by some ambulance as fast
as possible. If all speeds were the same, then we would place the ambulances in locations S such
that maxv ∈X d (v, S ) is minimized—this is the famous k-center problem. Differing speeds, however,
leads to non-uniformity, thus motivating the problem we consider.

Definition 1.1 (The Non-Uniform k-Center Problem (NUkC)). The input to the problem is a metric
space (X ,d ) and a collection of k radii {r1 ≥ r2 ≥ · · · ≥ rk }. The objective is to find a placement
C ⊆ X of the centers of these balls, so as to minimize the dilation parameter α such that the union
of balls of radius α · ri around the ith center covers all of X . Equivalently, we need to find centers

{c1, . . . , ck } to minimize maxv ∈X mink
i=1

d (v,ci )
ri

.

As mentioned, when all ri ’s are the same (and equal to 1 by scaling), we get thek-center problem.
The k-center problem was originally studied by Gonzalez [10] and Hochbaum and Shmoys [13] as
a clustering problem of partitioning a metric space into different clusters to minimize the maxi-
mum intra-cluster distances. One issue (see Figure 1 for an illustration and refer to Reference [11]
for a more detailed explanation) with k-center (and also k-median/means) as an objective function
for clustering is that it favors clusters of similar sizes with respect to cluster radii. However, in the
presence of qualitative information on the differing cluster sizes, the non-uniform versions of the
problem can arguably provide more nuanced solutions. One such extreme special case was consid-
ered as the “clustering with outliers” problem [7] where some fixed number, say, �, of points in the
metric space need not be covered by the clusters. In particular, Charikar et al. [7] consider (among
other problems) the k-center with outlier problem (kCwO, for short) and give a 3-approximation
for this problem. It is easy to see that kCwO is a special case of the NUkC problem, where there
are k balls of radius 1 and � balls of radius 0.

Motivated by the aforementioned reasons (both from facility location as well as from cluster-
ing settings), we investigate the worst-case complexity of the NUkC problem. Gonzalez [10] and
Hochbaum and Shmoys [13] give 2-approximations for the k-center problem and also show that
no better factor is possible unless P = NP. Charikar et al. [7] give a 3-approximation for the kCwO

problem, and this has been the best factor known for 15 years. Given these algorithms, it is natural
to wonder if a simple O (1)-approximation exists for the NUkC problem. In fact, our first result
shows a qualitative distinction between NUkC and these problems: Constant-approximations are
impossible for NUkC unless P=NP.

Theorem 1.2. Unless P = NP , the NUkC problem does not admit a c (n)-factor approximation

unless c (n) � 2poly(n) , even when the underlying metric is a tree metric.

The hardness result is by a reduction from the so-called resource minimization for fire contain-

ment problem on trees (RMFC-T, in short), a variant of the firefighter problem. To complement the
above hardness result, we give the following bi-criteria approximation algorithm that is the main
result of the article and that further highlights the connections with RMFC-T, since our algorithms
heavily rely on the recent algorithms for RMFC-T [1, 3]. An (a,b)-factor bi-criteria algorithm for
NUkC returns a solution that places at most a balls of each type (thus in total it may use as many
as a · k balls), and the dilation is at most b times the optimum dilation for the instance that places
exactly one ball of each type.

Theorem 1.3. There is an (O (1),O (1))-factor bi-criteria algorithm for the NUkC problem.
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Fig. 1. The left figure shows the dataset, the middle figure shows a traditional k-center clustering, and the

right figure depicts a non-uniform clustering.

Furthermore, as we elucidate below, our techniques also give uni-criteria results when the num-
ber of distinct radii is 2. In particular, we get a 2-approximation for the kCwO problem and a
(1 +
√

5)-approximation when there are only two distinct types of radii.

Theorem 1.4. There is a 2-approximation for the kCwO problem.

Theorem 1.5. There is a (1 +
√

5)-approximation for the NUkC problem when the number of dis-

tinct radii is at most 2.

1.1 Discussion on Techniques

Our proofs of Theorems 1.2 and 1.3 show a strong connection between NUkC and the so-called
resource minimization for fire containment problem on trees (RMFC-T, in short). This connection
is one of the main findings of the article, so we first formally define this problem.

Definition 1.6 (Resource Minimization for Fire Containment on Trees (RMFC-T)). Given a rooted
tree T as input, the goal is to select a collection of non-root nodes N from T such that (a) every
root-leaf path has at least one vertex from N , and (b) maxt |N ∩ Lt | is minimized, where Lt is the
t th layer of T , that is, the vertices of T at exactly distance t from the root.

To understand the reason behind the name, consider a fire starting at the root spreading to
neighboring vertices each day; the RMFC-T problem minimizes the maximum number of fire-
fighters needed on any given day so as to prevent the fire spreading to the leaves of T .

It is NP-complete to decide whether the optimum of RMFC-T is at most 1 [8, 17]. Given any
RMFC-T instance and any c > 1, we construct an NUkC instance on a tree metric such that in
the “yes” case there is always a placement with dilation = 1 that covers the metric, while in the
“no” case even a dilation of c does not help. Upon understanding our hardness construction, the
inquisitive reader may wonder if the reduction also works in the other direction, i.e., whether we
can solve NUkC using a reduction to RMFC-T problem. Unfortunately, we do not know whether
this is true even for two types of radii. However, as we explain below, we can still use positive
results for the RMFC-T problem to design good algorithms for the NUkC problem.

We start off by considering the natural LP relaxation for the NUkC problem and describe an LP-

aware reduction of NUkC to RMFC-T. More precisely, given a feasible solution to the LP-relaxation
for the given NUkC instance, we describe a procedure to obtain an instance of RMFC-T defined
by a tree T , with the following properties: (i) We can exhibit a feasible fractional solution for the
LP relaxation of the RMFC-T instance and (ii) given any feasible integral solution to the RMFC-T

instance, we can obtain a feasible integral solution to the NUkC instance that dilates the radii by
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at most a constant factor. Therefore, an LP-based ρ-approximation to RMFC-T would immediately
imply (ρ,O (1))-bicriteria approximation algorithms for NUkC. This already implies Theorem 1.4
and Theorem 1.5, since the corresponding RMFC-T instances have no integrality gap. Also, us-
ing a result of Chalermsook and Chuzhoy [3], we directly obtain an (O (log∗ n),O (1))-bicriteria
approximation algorithm for NUkC.

Here we reach a technical bottleneck: Chalermsook and Chuzhoy [3] also show that the inte-
grality gap of the natural LP relaxation for RMFC-T is Ω(log∗ n). Therefore, the above approach
cannot1 give us an (O (1),O (1))-bicriteria approximation.

To get an (O (1),O (1))-algorithm, we use the O (1)-approximation for the RMFC-T problem by
Adjiashvili et al. [1]. At a very high level, the main technique in [1] is the following. Given an
RMFC-T instance, they carefully and efficiently “guess” a subset of the optimum solution, such that
the natural LP-relaxation for covering the uncovered leaves hasO (1)-integrality gap. However, this
guessing procedure crucially uses the tree structure of T in the RMFC-T problem. Unfortunately
for us though, we get the RMFC-T tree only after solving the LP for NUkC, which already has
an Ω(log∗ n)-gap! Nevertheless, inspired by the ideas in [1], we show that we can also efficiently
preprocess an NUkC instance, “guessing” the positions of a certain number of balls in an optimum
solution, such that the standard LP-relaxation for covering the uncovered points indeed has O (1)
integrality gap. We can then invoke the LP-aware embedding reduction to RMFC-T at this junc-
ture to solve our problem. This is quite delicate, and is the most technically involved part of the
article.

1.2 Related Work

The k-center problem [10, 13] and the k-center with outliers [7] problems are classic problems
in approximation algorithms and clustering. These problems have also been investigated under
various settings such as the incremental model [5, 22], streaming model [4, 22], and more recently
in the map-reduce model [14, 21]. Similarly, the k-median [2, 6, 15, 20] and k-means [12, 15, 16, 18]
problems are also classic problems studied extensively in approximation algorithms and clustering.
The generalization of k-median to a routing+location problem was also studied recently [9]. It
would be interesting to explore the complexity of the non-uniform versions of these problems.
Another direction would be to explore if the new non-uniform model can be useful in solving
clustering problems arising in practice.

2 HARDNESS REDUCTION

In this section, we prove Theorem 1.2 based on the following NP-hardness [17] for RMFC-T.

Theorem 2.1. [17] Given a tree T whose leaves are at the same distance from the root, it is NP-

hard to distinguish between the following two cases. YES: There is a solution to the RMFC-T instance

of value 1. NO: All solutions to the RMFC-T instance have value 2.

Suppose, for contradiction’s sake, there is a c (n)-factor approximation algorithm for NUkC for
some function c (n) ≤ 2p (n) for some fixed polynomialp. Given an RMFC-T instance defined by tree
T , we now describe the construction of our NUkC instance. Let n be the number of nodes inT . Let
h ≤ n be the height of the tree, and let Lt denote the vertices of the tree at distance exactly t from
the root. So the leaves constitute Lh , since all leaves are at the same distance from the root. Let

1Indeed, our hardness reduction in Theorem 1.2 can be generalized to obtain an (Ω(log∗ n), c ) integrality gap for any
constant c > 1 for the natural LP relaxation for NUkC.
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c = 
c (n)� + 1 be any fixed constant strictly larger than the desired approximation factor function
evaluated at n.

The NUkC instance, I (T ), is defined by the metric space (X ,d ), and a collection of balls. The
points in our metric space will correspond to the leaves of the tree, i.e.,X = Lh , and thus |X | ≤ n. To
define the metric, we assign a weight d (e ) = (2c + 1)h−i+1 for each edge whose one endpoint is in
Li and the other in Li−1; we then defined be the shortest-path metric onX induced by this weighted
tree. Finally, we set k = h, and define the k radii r1 ≥ r2 ≥ · · · ≥ rk iteratively as follows: Define
rk := 0, and for k ≥ i > 1, set ri−1 := (2c + 1) · ri + 2(2c + 1). This completes the NUkC instance.
Before proceeding we make the simple observation: For any two leaves u and u ′ with lca v ∈
Lt , we have d (u,u ′) = 2(2c + 1 + (2c + 1)2 + · · · + (2c + 1)h−t ) = rt . Thus, the maximum distance
between two points is ≤ (2n) (2c )n ≤ 2poly(n) , implying the size of the number is polynomially
bounded, which in turn implies an efficient reduction.

The following lemma, therefore, proves Theorem 1.2. If there was a c (n)-approximation al-
gorithm for NUkC, when run on I (T ), then it would distinguish between the following two
cases.

Lemma 2.2. If T is the YES case of Theorem 2.1, then I (T ) has optimum dilation = 2. If T is the

NO case of Theorem 2.1, then I (T ) has optimum dilation ≥ 2c .

Proof. Suppose T is in the YES case, and there is a solution to RMFC-T, which selects at most
1 node from each level Lt . If v ∈ Lt is selected, then select a center cv arbitrarily from any leaf in
the sub-tree rooted at v and open the ball of radius rt . We now need to show all points in X = Lh

are covered by these balls. Letu be any leaf; there must be a vertexv in some level Lt inu’s path to
the root such that a ball of radius rt is opened at cv . However, d (u, cv ) ≤ d (u,v ) + d (v, cv ) = 2rt

and so the ball of radius 2rt around cv covers u.
Now supposeT is in the NO case, and the NUkC instance has a solution with optimum dilation
< 2c . We build a good solution for the RMFC-T instance N as follows: Suppose the NUkC solution
opens the ball of radius < 2c · rt around center u. Let v be the vertex on the u-root path appearing
in level Lt . We then pick this node in N . Observe two things: First, this ball covers all the leaves in
the sub-tree rooted atv , since rt ≥ d (u,u ′) for any such u ′. Furthermore, since the NUkC solution
has only one ball of each radius, we get that |N ∩ Lt | ≤ 1. Finally, since d (u,w ) ≥ 2c · rt for all
leaves w not in the sub-tree rooted at v , the ball of radius rt around u does not contain any leaves
other than those rooted at v . Contra-positively, since all leaves w are covered in some ball, every
leaf must lie in the sub-tree of some vertex picked in N . That is, N is a solution to RMFC-T with
value = 1 contradicting the NO case. �

3 LP-AWARE REDUCTION FROM NUKC TO RMFC-T

For reasons that will be apparent soon, we consider instances I of NUkC counting multiplicites.
That is, we consider an instance to be a collection of tuples (k1, r1), . . . , (kh , rh ) to indicate there
are ki balls of radius ri . So

∑h
t=1 kt = k . Intuitively, the reason we do this is that if two radii rt

and rt+1 are “close-by” then it makes sense to round up rt+1 to rt and increase kt , losing only a
constant-factor loss in the dilation.

LP-relaxation for NUkC. We now state the natural LP relaxation for a given NUkC instance
I. For each point p ∈ X and radius type ri , we have an indicator variable xp,i ≥ 0 for whether
we place a ball of radius ri centered at p. By doing a binary search on the optimal dilation and
scaling, we may assume that the optimum dilation is 1. Then, the following linear program must
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be feasible. We use B (q, ri ) as follows to denote the set of points within distance ri from q:

∀p ∈ X ,
h∑

t=1

∑

q∈B (p,rt )

xq,t ≥ 1 (NUkC LP)

∀t ∈ 1, . . . ,h
∑

p∈X
xp,t ≤ kt .

LP-relaxation for RMFC-T. Since we reduce fractional NUkC to fractional RMFC-T, we now
state the natural LP relaxation for RMFC-T on a tree T of depth h + 1. In fact, we will work with
the following budgeted-version of RMFC-T (that is equivalent to the original RMFC-T problem —
for a proof, see Reference [1]): Instead of minimizing the maximum number of “firefighters” at any
level t (that is, |N ∩ Lt |, where N is the chosen solution), suppose we specify a budget limit of kt

on |N ∩ Lt |. The goal is the minimize the maximum dilation of these budgets. Then the following
is a natural LP relaxation for the budgeted RMFC-T problem on trees. Here L = Lh is the set of
leaves, and Lt are the layer t-nodes. For a leaf node v , let Pv denote the vertex set of the unique
leaf-root path excluding the root,

minα

∀v ∈ L,
∑

u ∈Pv

yu ≥ 1 (RMFC-T LP)

∀t ∈ 1, . . . ,h
∑

u ∈Lt

yu ≤ α · kt .

The LP-aware Reduction to Tree metrics. We now describe our main reduction algorithm,
which takes as input an NUkC instance I = {(X ,d ); (k1, r1), . . . , (kh , rh )} and a feasible solution x
to (NUkC LP) and returns a budgeted RMFC-T instance IT defined by a treeT along with budgets
for each level and a feasible solution y to (RMFC-T LP) with dilation 1. The tree we construct
will have height h + 1 and the budgeted RMFC-T instance will have budgets precisely kt at level
1 ≤ t ≤ h, and the budget for the leaf level is 0. For clarity, throughout this section we use the word
points to denote elements of the metric space in I and the word vertices/nodes to denote the tree
nodes in the RMFC-T instance that we construct.

We build the tree T in a bottom-up manner, where in each round i , we build the (h + 1 − i )th
layer of the tree and connect it to the vertices on the (h + 2 − i )th layer. To construct the vertices of
the (h + 1 − i )th layer, we pick a set of far-away representative points (the distance scale increases
as we move up the tree) and cluster all points to their nearest representative. This is similar to a
clustering step in many known algorithms for facility location (see, e.g., Reference [6]), but whereas
an arbitrary set of far-away representatives would suffice in the facility location algorithms, we
need to be careful in how we choose this set to make the overall algorithm work. Formally, each
vertex of the tree T is mapped to some point in X , and we denote the mapping of the vertices at
level t by ψt : Lt → X . We will maintain that each ψt will be injective, so ψt (u) � ψt (v ) for u � v
in Lt . So, ψ−1

t is well defined for the range of ψt . The complete algorithm runs in rounds h + 1 to
2 building the tree one level per round. To begin with, the ψh+1 mapping is an arbitrary bijective
mapping between L := Lh+1, the set of leaves of the tree, and the points of X (so, in particular,
|L| = |X |). We may assume it to be the identity bijection.

In each round t , the range of the mappings become progressively smaller, that is2,ψt−1 (Lt−1) ⊆
ψt (Lt ). We call ψt−1 (Lt−1) as the winners at level t . Let Covt (p) :=

∑
q∈B (p,rt ) xq,t denote the

2We are using the notation ψ (X ) :=
⋃

x∈X ψ (x ).
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ALGORITHM 1: Round t of the LP-aware Reduction.
Input: Level Lt , subtrees below Lt , the mappingsψs : Ls → X for all t ≤ s ≤ h.
Output: Level Lt−1, the connections between Lt−1 and Lt , and the mappingψt−1.

1 Define A = ψt (Lt ) the set of points who are winners at level t ;

2 while A � ∅ do

3 (a) Choose the point p ∈ A with minimum coverage Cov≥t (p);

4 (b) Let N (p) := {q ∈ A : d (p,q) ≤ 2rt−1} be the set of all nearby points in A to p;

5 (c) Create a new tree vertex w ∈ Lt−1 corresponding to p and setψt−1 (w ) := p. Call p a winner at

level t − 1, and each q ∈ N (p) ⊆ A a loser to p at this level;

6 (d) Create edge (w,v ) for tree vertices v ∈ ψ−1
t (N (p)) associated with N (p) at level t ;

7 (e) Set A← A \ (N (p));

8 (f) Set yw = Covt−1 (p);

9 end

ALGORITHM 2: Convert NUkC to RMFC-T

Input: Instance I of NUkC; Feasible solution x to (NUkC LP)
Output: Level (h + 1)-tree instance I (T ) of RMFC-T; Feasible solution y to (RMFC-T LP);
ψt : Lt → X injective function for h + 1 ≥ t ≥ 1.

1 Lh+1 is an arbitrary set of |X | vertices. Ψh+1 is an arbitrary bijection from Lh+1 to X . Set kh+1 = 0 and

yw = 0 for all w ∈ Lh+1;

2 for t = h + 1 to 2: do

3 Run Algorithm 1;

4 Set the budget of level t − 1 for the RMFC-T instance as the kt−1 of the NUkC instance

5 end

6 L0 is a root node node r with edges to every vertex in L1. Set kr = 0 and set yr = 0.

fractional amount the point p is covered by radius rt balls in the solution x , with Covh+1 (p) = 0
for all p. Also define Cov≥t (p) :=

∑
s≥t Covs (p) denoting the fractional amount p is covered by

radius rt or smaller balls. To decide the vertices that will be winners at level t − 1, we perform
a clustering step as described earlier: Choose the vertex p with smallest Cov≥t and remove all
other vertices within a distance of 2rt−1, and repeat. We introduce w ∈ Lt−1 and set ψt−1 (w ) = p,
connectw to all nodesv such thatψt (v ) was removed by p, and set yw = Covt−1 (p). The choice of
the winner as the vertex with the smallest coverage is crucial in establishing that the RMFC-T LP
will admit a feasible solution. The full algorithm is described in Algorithm 1 and Algorithm 2.

We now move to the analysis. In the following proofs, letWt ⊆ X denote the winners at level t ,
that is,Wt = ψt (Lt ). The following claim asserts that the algorithm is well defined.

Lemma 3.1. The solution y is a feasible solution to (RMFC-T LP) on IT with dilation 1.

Proof. The proof is via two claims for the two different set of inequalities.

Claim 1. For all 1 ≤ t ≤ h + 1, we have
∑

w ∈Lt
yw ≤ kt .

Proof. Since we set the budget as 0 for level h + 1, and all yw values are set to 0 as well, the
constraint is trivially satisifed for this level. Hence, for the remainder of this proof, fix a level t
such that 1 ≤ t ≤ h. Recall that Wt = ψt (Lt ) denotes the winners at level t . By definition of the
algorithm, we have that

∑
w ∈Lt

yw =
∑

p∈Wt
Covt (p). Now note that for any two points p,q ∈Wt ,

we have B (p, rt ) ∩ B (q, rt ) = ∅. To see this, consider the first point that enters A in the (t + 1)th
round when Lt was being formed. If this is p, then all points in the radius 2rt ball around p are
deleted from A.
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Therefore, since the rt -balls around the winners in Wt are disjoint, the second inequality of
NUkC LP implies

∑
p∈Wt

∑
q∈B (p,rt ) xq,t ≤ kt , and the inner summand in the LHS here is precisely

Covt (p). �

Claim 2. For any leaf node w ∈ Lh+1, we have
∑

v ∈Pw
yv ≥ 1.

Proof. We start with an observation. Fix a level t and a nodeu ∈ Lt , and supposeψt (u) = p. By
construction, it follows that p is a winner at every level t ′ ≥ t , i.e., there is a leaf v in the sub-tree
ofT rooted atu, such thatψt ′ (v ) = p for all t ′ ≥ t . We define such a leaf nodev to be the associated

leaf for node u. Since p is a winner at all levels up to t , we also observe that the total y value in the
path from v to u is precisely Cov≥t (p), i.e.,

∑
w ′ ∈[u,v]-path yw ′ = Cov≥t (p).

We now prove the claim using the following simple induction hypothesis that, for every level
t , and every node u ∈ Lt , consider any leaf w in the sub-tree rooted at u. Then, we have that∑

w ′ ∈[u,w]-path yw ′ ≥
∑

w ′ ∈[u,v]-path yw ′ , where v is the associated leaf for u as defined in the pre-
ceding paragraph. In words, it says that the total y-value in the u-w path is at least that in the u-v
path for all u, and for all w in u’s sub-tree.

The base case is trivially true for level h + 1. Now suppose the claim holds for level t , and con-
sider level t − 1 and nodeu ∈ Lt−1. Supposeu is connected to nodesu1,u2, . . . ,um from level Lt . Let
v1,v2, . . . ,vm denote the associated leaves of u1,u2, . . . ,um . Note that one of these will also be the
associated leaf of node u, let this be v1 without loss of generality. Finally, let p1,p2, . . . ,pm denote
the points in X corresponding to u1,u2, . . . ,um , i.e.,ψt (ui ) = pi for 1 ≤ i ≤ m. Note thatψt−1 (u) =
ψt (u1) = p1. Also note that, by construction, we have that

∑
w ′ ∈[ui ,vi ]-path yw ′ = Cov≥t (pi ).

Now consider anyw in the sub-tree ofT rooted atu, and without loss of generality, supposew be-
longs to the sub-tree rooted atu2 inT . Since the algorithm choosesp1 as the winner at level t − 1 to
construct node u, we get that Cov≥t (p1) =

∑
w ′ ∈[u1,v1]-path yw ′ ≤

∑
w ′ ∈[u2,v2]-path yw ′ = Cov≥t (p2).

Moreover, from the induction hypothesis, we know that
∑

w ′ ∈[u2,w]-path yw ′ ≥
∑

w ′ ∈[u2,v2]-path yw ′ .
By combining these two inequalities, we get that

∑
w ′ ∈[u2,w]-path yw ′ ≥

∑
w ′ ∈[u1,v1]-path yw ′ . Adding

yu to both sides completes the proof of the induction hypothesis.
The proof of Claim 2 now follows easily by noting that for every nodeu ∈ L1 such thatψ1 (u) = p

and such that v is the associated leaf of u, we have that
∑

w ′ ∈[u,v]-path yw ′ = Cov≥1 (p) = 1. �

Claim 1 and Claim 2 together complete the proof of Lemma 3.1. �

The following lemma shows that any good integral solution to the RMFC-T instance IT can be
converted to a good integral solution for the NUkC instance I.

Lemma 3.2. Given an NUkC instance I, let IT be the instance created by Algorithm 2. Suppose

there exists a feasible solution N to IT such that for all 1 ≤ t ≤ h, |N ∩ Lt | ≤ αkt . Then there is a

solution to the NUkC instance I that opens, for each 1 ≤ t ≤ h, at most αkt balls of radius ≤ 2r≥t ,

where r≥t := rt + rt+1 + · · · + rh .

Proof. Construct the NUkC solution as follows: for level 1 ≤ t ≤ h and every vertex w ∈ N ∩
Lt , place the center atψt (w ) of radius 2r≥t . We claim that every point inX is covered by some ball.
Indeed, for any p ∈ X , look at the leaf v = ψ−1

h+1 (p), and let w ∈ N be a node in the root-leaf path.
Let w ∈ Lt for some t . Now observe that d (p,ψt (w )) ≤ 2r≥t ; this is because for any edge (u ′,v ′)
in the tree where u ′ is in Lt and is the parent of v ′, we have that d (ψt+1 (v ′),ψt+1 (u ′)) < 2rt . �

This completes the reduction, and we now prove a few results that follow easily from known
results about the firefighter problem.

Theorem 3.3. There is a polynomial time (O (log∗ n), 8)-bi-criteria algorithm for NUkC.
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Proof. Given any instance I of NUkC, we first club the radii to the nearest power of 2 to get
an instance I′ with radii (k1, r1), . . . , (kh , rh ) such that an (a,b)-factor solution for I′ is an (a, 2b)-
solution for I. Now, by scaling, we assume that the optimal dilation for I′ is 1; we let x be the
feasible solution to the NUkC LP. Then, using Algorithm 2, we can construct the tree I′T and a
feasible solution y to the RMFC-T LP. We can now use the following theorem of Chalermsook
and Chuzhoy [3]: Given any feasible solution to the RMFC-T LP, we can obtain a feasible set N
covering all the leaves such that for all t , |N ∩ Lt | ≤ O (log∗ n)kt . Finally, we can apply Lemma 3.2
to obtain a (O (log∗ n), 4) solution to I′ (since r≥t ≤ 2rt ). �

Proofs of Theorem 1.4 and Theorem 1.5. We use the following claim regarding the integrality
gap of RMFC-T LP for depth 2 trees.

Claim 3. When h = 2 and kt ’s are integers, given any fractional solution to RMFC-T LP, we can

find a feasible integral solution as well.

Proof. Given a feasible solutiony to (RMFC-T LP), we need to find a set N such that |N ∩ Lt | ≤
kt for t = 1, 2. There must exist at least one vertex w ∈ L1 such that yw ∈ (0, 1) for otherwise the
solutiony is trivially integral. If only one vertexw ∈ L1 is fractional, then since k1 is an integer, we
can raise thisyw to be an integer as well. So at least two verticesw andw ′ in L1 are fractional. Now,
without loss of generality, let us assume that |C (w ) | ≥ |C (w ′) |, where C (w ) is the set of children
of w . Now for some small constant 0 < ϵ < 1, we do the following: y ′w := yw + ϵ , y ′w ′ := yw ′ − ϵ ,
∀c ∈ C (w ), y ′c := yc − ϵ , and ∀c ∈ C (w ′), y ′c := yc + ϵ . Note that y (L1) remains unchanged, y (L2)
can only decrease, and root-leaf paths still add to at least 1. We repeat this till we rule out all
fractional values. �

To see the proof of Theorem 1.4, note that an instance of the k-center with outliers problem is an
NUkC instance with (k, 1), (�, 0), that is, r1 = 1 and r2 = 0. We solve the LP relaxation and obtain
the tree and an RMFC-T solution with height h = 3. However, since the budget for level 3 and all
the yw values for vertices in that level are 0, we may ignore it. Then we can apply the above claim
to obtain a feasible integral solution to RMFC-T on the depth-2 tree. Now we can apply Lemma 3.2
and plug in r≥1 = r1 = 1 for kCwO, to obtain the 2-factor approximation guarantee.

The proof of Theorem 1.5 is similar. If r1 < θr2, where θ = (
√

5 + 1)/2, then we simply run k-
center with k = k1 + k2. This gives a 2θ =

√
5 + 1-approximation. Otherwise, we apply Lemma 3.2

to get a 2(1 + 1
θ

) =
√

5 + 1-approximation. �
We end this section with a general theorem, which is an improvement over Lemma 3.2 in the

case when many of the radius types are close to each other, in which case r≥t could be much
larger than rt . Indeed, the natural way to overcome this would be to group the radius types into
geometrically increasing values as we did in the proof of Theorem 3.3. This ensures that rt ≥ 2rt+1

for all t , and therefore also ensures that r≥t ≤ O (1)rt . While this strategy suffices for Theorem 3.3,
we will not be able to use it directly for our bi-criteria result discussed in next section. Indeed, as
we will see, we need to perform a different kind of grouping of the radii, to ensure that the budget

for radius type i is 2i for all 1 ≤ i ≤ L. This is along the lines of the grouping step in Adjiashvili
et al. [1] for RMFC-T, which ensures that the budget on the firefighters at depth i of the tree is 2i . If
we were to use the old approach, then we will not have both properties holding together. For this
reason, we need a generalization of the LP-aware reduction Algorithm 2 that does this geometric
grouping inside the algorithm itself, and builds the tree by focusing only on radius types where
the radii grow geometrically.

Theorem 3.4. Given an NUkC instanceI = {M = (X ,d ), (k1, r1), (k2, r2), . . . , (kh , rh )} and an LP

solution x for (NUkC LP), there is an efficient reduction that generates an RMFC-T instance IT and

an LP solution y to (RMFC-T LP), such that the following holds:
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ALGORITHM 3: Round t of the Improved Reduction.

Input: Level Lt , subtrees below Lt , the mappingsψs : Ls → X for all t ≤ s ≤ h.
Output: Level Lt−1, the connections between Lt−1 and Lt , and the mappingψt−1.

1 Let t ′ = mins s.t.rs ≤ 2rt−1 be the type of the largest radius smaller than 2rt−1;

2 Define A = ψt (Lt ) the set of points who are winners at level t ;

3 while A � ∅ do

4 (a) Choose the point p ∈ A with minimum coverage Cov≥t (p);

5 (b) Let N (p) := {q ∈ A : d (p,q) ≤ 2rt ′ } denote all points in A within 2rt ′ from p;

6 (c) Create new vertices wt−1, . . . ,wt ′−1 ∈ Lt−1, . . . ,Lt ′−1 levels respectively, all corresponding to
p, i.e., setψi (w ) := p for all t ′ − 1 ≤ i ≤ t − 1. Connect each pair of these vertices in successive
levels with edges. Call p a winner at levels t − 1, . . . , t ′ − 1;

7 (d) Create edge (wt−1,v ) for vertices v ∈ ψ−1
t (N (p)) associated with N (p) at level t ;

8 (e) Set A← A \ (N (p));

9 (f) Set ywi
= Covi (p) for all t − 1 ≤ i ≤ t ′ − 1;

10 end

11 Jump to round t ′ − 1 of the algorithm. Add t ′ − 1 to the set of barrier levels;

(i) For any two tree vertices w ∈ Lt and v ∈ Lt ′ where w is an ancestor of v (that is, t ≤ t ′),
suppose p and q are the corresponding points in the metric space, i.e., p = ψt (w ) and q =
ψt ′ (v ), then it holds that d (p,q) ≤ 8rt .

(ii) Suppose there exists a feasible solution N to IT such that for all 1 ≤ t ≤ h, |N ∩ Lt | ≤ αkt .

Then there is a solution to the NUkC instance I that opens, for each 1 ≤ t ≤ h, at most αkt

balls of radius at most 8rt .

3.1 Proof of Theorem 3.4

Both the algorithm and the proof are very similar to the ones we have just seen before. At a high
level, the only difference occurs when we identify and propagate winners: Instead of doing it for
each radius type, we identify barrier levels where the radius doubles, and perform the clustering
step only at the barrier levels. We now present the algorithm, which again proceeds in rounds
h + 1,h,h − 1, . . . , 2, but makes jumps whenever there are many clusters of similar radius type. To
start with, define rh+1 = 0.

Our proof proceeds almost in an identical manner to those of Lemma 3.1 and Lemma 3.2, but
now our tree has an additional property that for any two nodes u ∈ Li and v ∈ Li′ , where u is an
ancestor of v , the distance between the corresponding points in the metric space p = ψi (u) and
q = ψi′ (v ) is at most d (p,q) ≤ 8ri , which was the property not true in the earlier reduction. This is
easy to see because as we traverse a tree path fromu tov , notice that each time we change winners,
the distance between the corresponding points in the metric space decreases geometrically. This
proves property (i) of Theorem 3.4. The proof of the second property is almost identical to that
described in Section 3, and we sketch it below for completeness.

Lemma 3.5. The solution y is a feasible solution to (RMFC-T LP) on IT with dilation 1.

Proof. The proof is via two claims for the two different sets of inequalities. For both the claims,
letWt ⊆ X denote the winners at level t , that is,Wt = ψt (Lt ).

Claim 4. For all 1 ≤ t ≤ h, we have
∑

w ∈Lt
yw ≤ kt .

Proof. Fix a barrier level t . By definition of the algorithm,
∑

w ∈Lt
yw =

∑
p∈Wt

Covt (p). Now
note that for any two points p,q ∈Wt , we have B (p, rt ) ∩ B (q, rt ) = ∅. To see this, consider the
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first point that enters A in the round (corresponding to the previous barrier) when Lt was being
formed. If this isp, then all points in the radius 2rt ball is deleted fromA. Since the balls are disjoint,
the second inequality of NUkC LP implies

∑
p∈Wt

∑
q∈Bt (p ) xq,t ≤ kt . The second summand in the

LHS is the definition of Covt (p). The same argument holds for all levels t between two consecutive
barrier levels t1 and t2 s.t. t1 > t2, as the winner set remains the same, and the radius rt is only
smaller than the radius rt2 at the barrier t2. �

Claim 5. For any leaf node w ∈ L, we have
∑

v ∈Pw
yv ≥ 1.

Proof. This proof is identical to that of Claim 2. �

�
Finally, the following lemma shows that any good integral solution to the RMFC-T instance IT

can be converted to a good integral solution for the NUkC instance I.

Lemma 3.6. Suppose there exists a feasible solution N to IT such that for all 1 ≤ t ≤ h, |N ∩ Lt | ≤
αkt . Then there is a solution to the NUkC instance I that opens, for each 1 ≤ t ≤ h, at most αkt balls

of radius at most 8rt .

Proof. Construct the NUkC solution as follows: for level 1 ≤ t ≤ h and every vertex w ∈ N ∩
Lt , place the center atψt (w ) of radius 8rt . We claim that every point in X is covered by some ball.
Indeed, for any p ∈ X , look at the leaf v = ψh+1 (p), and let w ∈ N be a node in the root-leaf path
that covers it in the instance IT . By property (i) of Theorem 3.4, we have that the distance between
ψt (w ) and p is at most 8rt , and hence the ball of radius 8 · rt around ψt (w ) covers p. The number
of balls of radius type t is trivially at most αkt . �

4 GETTING AN (O (1),O (1))-APPROXIMATION ALGORITHM

In this section, we improve our approximation factor on the number of clusters from O (log∗ n)
to O (1), while maintaining a constant-approximation in the radius dilation. As mentioned in the
Introduction, this requires more ideas, since using (NUkC LP) one cannot get any factor better than
(O (log∗ n),O (1))-bicriteria approximation, since any integrality gap for (RMFC-T LP) translates to
a (Ω(log∗ n),Ω(1)) integrality gap for (NUkC LP).

Our algorithm is heavily inspired by the recent paper of Adjiashvili et al. [1], who give anO (1)-
approximation for the RMFC-T problem. In fact, the structure of our algorithms follows the same
three “steps” of their algorithm. Given an RMFC-T instance, the authors of Reference [1] first
“compress” the input tree to get a new tree whose depth is bounded, and, second, [1] give a partial
rounding result that saves “bottom heavy” leaves, that is, leaves that in the LP solution are covered
by nodes from low levels; and finally, Adjiashvili et al. [1] give a clever partial enumeration algo-
rithm for guessing the nodes from the top levels chosen by the optimum solution. We also proceed
in these three steps with the first two being very similar to the first two steps in Reference [1].
However, the enumeration step requires new ideas for our problem. In particular, the enumeration
procedure in Reference [1] crucially uses the tree structure of the firefighter instance, and the way
our reduction generates the tree for the RMFC-T instance is by using the optimal LP solution for
the NUkC instance, which in itself suffers from the Ω(log∗ n) integrality gap. Therefore, we need
to devise a more sophisticated enumeration scheme although the basic ideas are guided by those
in Reference [1]. Throughout this section, we do not optimize for the constants.

4.1 Part I: Radii Reduction

In this part, we describe a preprocessing step that decreases the number of types of radii. This is
similar to Theorem 5 in Reference [1].
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Theorem 4.1. Let I be an instance of NUkC with radii {r1, r2, . . . , rk }. Then we can efficiently

construct a new instance ̂I with radii multiplicities (k0, r̂0), . . . , (kL, r̂L ) and L = Θ(logk ) such that:

(i) ki := 2i for all 0 ≤ i < L and kL ≤ 2L .

(ii) If the NUkC instance I has a feasible solution, then there exists a feasible solution for ̂I.

(iii) Given an (α , β )-bicriteria solution to ̂I, we can efficiently obtain a (3α , β )-bicriteria solution

to I.

Proof. For an instanceI, we construct the compressed instance ̂I as follows. Partition the radii

into Θ(logk ) classes by defining barriers at r̂i = r2i for 0 ≤ i ≤ �logk�. Now to create instance ̂I,
we simply round up all the radii r j for 2i ≤ j < 2i+1 to the value r̂i = r2i . Notice that the multiplicity
of r̂i is precisely 2i (except maybe for the last bucket, where there might be fewer radii rounded
up than the budget allowed).

Property (i) is just by construction of instance. Property (ii) follows from the way we rounded
up the radii. Indeed, if the optimal solution for I opens a ball of radius r j around a point p, then
we can open a cluster of radius r̂i around p, where i is such that 2i ≤ j < 2i+1. Clearly, the number
of clusters of radius r̂i is at most 2i , because OPT uses at most one cluster of each radius r j .

For property (iii), suppose we have a solution ̂S for ̂I that opens α2i clusters of radius βr̂i for
all 0 ≤ i ≤ L. Construct a solution S for I as follows. For each 1 ≤ i ≤ L, let Ci denote the set of
centers where ̂S opens balls of radius βr̂i . In the solution S , we also open balls at precisely these
centers with 2α balls of radius βr j for every 2i−1 ≤ j < 2i . Since |Ci | ≤ α · 2i , we can open a ball
at every point inCi ; furthermore, since j < 2i , we have r j ≥ r̂i and so we cover whatever the balls

from ̂S covered.
Finally, we also open the α clusters (corresponding to i = 0) of radius βr1 = βr̂0 at the respective

centers C0, where ̂S opens centers of radius r̂0. Therefore, the total number of clusters of radius
type is at most 2α with the exception of r1, which may have 3α clusters. �

4.2 Part II: Satisfying Bottom Heavy Points

One main reason why the above height reduction step is useful, is the following theorem from [1]
for RMFC-T instances on trees; we provide a proof sketch for completeness.

Theorem 4.2 ([1]). Given a treeT of heighth and a feasible solutiony to RMFC-T LP with objective

value at most 1, we can find a feasible integral solution N to RMFC-T such that for all 1 ≤ t ≤ h,

|N ∩ Lt | ≤ kt + h.

Proof. Lety be a basic feasible solution of (RMFC-T LP). Call a vertexv of the tree loose ifyv > 0
and the sum of y-mass on the vertices from v to the root (inclusive of v) is < 1. Let VL be the set
of loose vertices of the tree, and let VI be the set of vertices with yv = 1. Clearly, N = VL ∪VI

is a feasible solution: Every leaf-to-root path either contains an integral vertex or at least two
fractional vertices with the vertex closer to root being loose. Next we claim that |VL | ≤ h; this
proves the theorem, since |N ∩ Lt | ≤ |VI ∩ Lt | + |VL | ≤ kt + |VL |.

The full proof can be found in Lemma 6 in Reference [1]; here is a high level sketch. There are
|L| + h inequalities in (RMFC-T LP), and so the number of fractional variables is at most |L| + h. We
may assume there are noyv = 1 vertices. Now, in every leaf-to-root path there must be at least two
fractional vertices, and the one closest to the leaf must be non-loose. If the closest fractional vertex
to each leaf was unique, then that would account for |L| fractional non-loose vertices implying
the number of loose vertices must be ≤ h. This may not be true; however, if we look at linearly

independent set of inequalities that are tight, then we can argue uniqueness as a clash can be used
to exhibit linear dependence between the tight constraints. �
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ALGORITHM 4: Partial Round

Input: NUkC instance ̂I with radii multiplicities (k0, r̂0), (k1, r̂1), . . . , (kL , r̂L ) with budgets ki = 2i for

radius type r̂i ; feasible LP solution x to (NUkC LP) for ̂I.
Parameter: τ = log(q ) L + 1, where log(q ) L denotes the iterated log applied q times to L
Output: Solution S opening O (q) · kt balls of radius O (̂rt ) for τ ≤ t ≤ L; Covers all of

X ′ := {p ∈ X : Cov≥τ (p) ≥ 1
2 }

1 Use the LP-reduction algorithms Algorithm 3 and Algorithm 2 (with Algorithm 3 called in Line 3) to

obtain a tree T of height L + 1 and fractional solution y for (RMFC-T LP) on T ;

2 for q ≥ � ≥ 1 do

3 Let T� denote the collection of sub-trees consisting of the portion of the tree T in levels

{log(�) L + 1, . . . , log(�−1) L};
4 X� ⊆ X ′ denote the set of clients for which

∑
log(�) L+1≤t ≤log(�−1) L

Covt (p) ≥ 1
2q ;

5 Introduce a fake root r� and attach each sub-tree in T� to obtain a single tree ̂T� ;

// Observe that the solution 2q · y, when restricted to ̂T�, is feasible for saving

all the leaves corresponding to points in X�.

6 Use procedure described in Theorem 4.2 on ̂T� to obtain integral solution N� for RMFC instance.;

// Note: for layer i, with i ∈ {log(�) L + 1, . . . , log(�−1) L}, one has

|N� ∩ Li | ≤ 2q ·
(
ki + log(�−1) L

)
≤ 4q · ki, since ki = 2i > log(�−1) L.

7 end

8 Let N := ∪1≤�≤qN� . Use Theorem 3.4, part (ii) to obtain solution for the NUkC instancêI that covers

all points in X ′ ;

// Note X ′ = ∪1≤�≤qX� and thus is covered. Note the number of balls opened of type t

for τ ≤ t ≤ L is at most 4q · kt , and their radius is ≤ 8̂rt .

Using the above, we can now give a rounding algorithm that covers all points in ̂I with large
coverage. This subroutine will be used in the final algorithm described in the next section. The
corollary encapsulates the main property of the algorithm.

Corollary 4.3. Suppose we are given an NUkC instance ̂I with radii multiplicities

(k0, r̂0), (k1, r̂1), . . . , (kL, r̂L ) with budgets ki = 2i for radius type r̂i , and an LP solution x to (NUkC

LP) for ̂I. Let τ = log(q ) L + 1, where log(q ) L denotes the iterated log appliedq times to L, and suppose

X ′ ⊆ X be the points such that Cov≥τ (p) ≥ 1
2 . Then Algorithm 4 returns a solution that opens at most

4q · kt balls of radius 8̂rt for τ ≤ t ≤ L, and covers all of X ′.

The above immediately implies a (very weakly) quasi-polynomial time O (1)-approximation for

NUkC. First we apply Theorem 4.1 to move to an instance ̂I. Next, we enumerate the set of clusters
of radii r̂t for 0 ≤ t ≤ log(q ) L for some constant q. Then we explicitly solve an LP where all the
uncovered points need to be fractionally covered by only clusters of radius type r̂t for t > log(q ) L.
This forces the set X ′ defined in Algorithm 4 to be the same as the set of uncovered points, and
therefore the solution it returns (along with the enumerated centers) forms a feasible solution that
gives a (12q, 8)-factor bicriteria approximation (the 4 becomes a 12 due to Theorem 4.1). The time
complexity is dominated by the enumeration of the optimal clusters of radii r̂t for 0 ≤ t ≤ log(q ) L.

This time is nO (log(q−1) L) = nO (log(q ) k ) , since the number of clusters of radius at least r̂log(q ) L is at

most O (2log(q ) L ) = O (log(q−1) L). As a result, we get the following corollary. Note that this gives
an alternate way to prove Theorem 3.3. All this, in the RMFC-T context, was also observed by [1].
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Corollary 4.4. For anyq ≥ 1, there exists an (12q, 8)-factor bicriteria algorithm for NUkC, which

runs in nO (log(q ) k ) time.

4.3 Part III: Clever Enumeration of Large Radii Clusters

In this section, we show how to obtain a (24, 10)-factor bi-criteria algorithm. Given an NUkC in-

stanceI, we first use Theorem 4.1 to get instance ̂I satisfying the conditions stated in the theorem.

Recall, an (α , β )-factor bicriteria algorithm for ̂I implies an (3α , β )-factor bicriteria algorithm for

I. Henceforth, we focus our attention on ̂I. We will give an (8, 10)-factor bicriteria algorithm for
this (see Lemma 4.5).

At a high level, our algorithm tries to “guess” the centers3A of large radius, that is, r̂i for i <
τ := log logL + 1 = log log logk + 1, which the optimum solution uses. However, this guessing is
done in a cleverer way than in Corollary 4.4. In particular, given a guess that is consistent with the
optimum solution (the initial “null set” guess is trivially consistent), our enumeration procedure
generates a list of candidate additions to A of size at most 2τ ≈ poly log logk (instead of n), one of
which is a consistent enhancement of the guessed setA. To make this procedure work out, we also
need to maintain a guess D of points where the optimum solution does not open centers. Given any
state (A,D) consistent with the optimal solution, our algorithm ignores points already covered by
balls around centers in A, and tries to cover all the uncovered points using the small-radius balls of

radius r̂t for t ≥ τ . If it succeeds and finds a solution B, then we can output our final solution to
be A ∪ B. However, if it fails, then we identify a way to make progress by enumerating a bounded
number of extensions to (A,D), one of which is (a) consistent with the optimal solution, and (b) a
non-trivial improvement over the current state (A,D). We now provide more details.

We start with some definitions. Throughout, A and D represent sets of tuples of the form (p, t )
where p ∈ X and t ∈ {0, 1, . . . ,τ }. Given such a set A, we associate a partial solution SA that, for
every (p, t ) ∈ A, opens a ball of radius 10̂rt centered at the point p. For the sake of analysis, fix an
optimum solution OPT. We say the set A is consistent with OPT if for all (p, t ) ∈ A, there exists
a distinct q ∈ X such that OPT opens a ball of radius r̂t at q and d (p,q) ≤ 5̂rt . In particular, this
implies that SA covers all points that this OPT-ball covers. We say the set D is consistent with
OPT if for all (q, t ) ∈ D, OPT does not open a radius r̂t ball at q (it may open a different radius ball
at q though). Given a set D, we define the minLevel of each point p as follows:

minLevelD (p) := 1 +max{t : (q, i ) ∈ D for all q ∈ B (p, r̂i ), and all i ≤ t }.
In words, it says the following: If D is consistent with OPT and if minLevelD (p) = t , then in the
OPT solution, p must be covered by a ball of radius r̂t or smaller.

Given the definitions of A and D, we now describe a more nuanced LP-relaxation for NUkC,
which tries to find a solution that is consistent with A and D. To this end, let XG be the subset of
points in X covered by the partial solution SA, and fix any subset Y ⊆ X \ XG of points. Define the
following LP:

∀p ∈ Y ,
L∑

t=minLevelD (p )

∑

q∈B (p, r̂t )

xq,t ≥ 1 (LPNUkC (Y ,A,D))

∀t ∈ 1, . . . ,h,
∑

q∈X
xq,t ≤ kt

∀(p, t ) ∈ A, xp,t = 1

∀(p, t ) ∈ D, xp,t = 0.

3Actually, we end up guessing centers “close” to the optimum centers, but for this introductory paragraph this intuition is
adequate.
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The following claim encapsulates the utility of the above relaxation.

Claim 6. If (A,D) is consistent with OPT, then (LPNUkC (Y,A,D)) is feasible.

Proof. We describe a feasible solution to the above LP using OPT. Given OPT, define O to be
the collection of tuples (q, t ) where OPT opens a radius r̂t ball at point q. Note that the num-
ber of tuples in O with second term t is at most kt . Since A is consistent with OPT, for every
(p, t ) ∈ A, there exists a distinct (q, t ) ∈ O such that d (p,q) ≤ 5̂rt . Remove all such tuples from O
to get the set O ′, and define x ′q,t = 1 for all tuples in O ′. We claim that x ′ forms a feasible solution
to (LPNUkC (Y ,A,D)).

Indeed, since OPT satisfies the second inequality and we only consider a subset of it correspond-
ing to O ′, the second inequality is trivially satisfied by x ′. We now show the first inequality holds
for every point in X \ XG . Let p be any such point. Let (q, t ) ∈ O be the tuple that covers p in
OPT. That is, in OPT there is a ball of radius r̂t around q that covers p. First note that since D
is consistent with OPT, t ≥ minLevelD (p). Thus taking the sum from t = minLevelD (p) is alright.
Next, we show that (q, t ) ∈ O ′. This will prove the claim. Suppose not. This means there is some
(s, t ) ∈ A such that d (s,q) ≤ 5̂rt . By triangle inequality, this would imply d (p, s ) ≤ 10̂rt . Which in
turn would imply p ∈ XG , which is a contradiction. �

Finally, for convenience, we define a forbidden set F := {(p, i ) : p ∈ X , 1 ≤ i < τ } that if added
to D disallows any large radii balls to be placed anywhere.

Now we are ready to describe the enumeration Algorithm 5, and give a sketch of the analysis.
We start withA and D being null, and thus are vacuously consistent with OPT. The procedure first
solves (LPNUkC (Y,A,D)) and uses Algorithm 4 to cover the “bottom-heavy” points (Step 8–10). If
the remaining top-heavy points XT can also be covered fractionally by small-radii balls, then we
use Algorithm 4 again to get an (O (1),O (1))-bicriteria algorithm (Steps 11–15). Else, the top-heavy
pointsXT can’t be covered fractionally. The enumeration step then enhances the (A,D) tuple. This
is the essence of Steps 17–24. To do so, first we note that there must exist some point q ∈ XT that
is not covered by a “small” radius ball in OPT (otherwise the LP would’ve fractionally coveredXT ).
Therefore, this point is covered by a large radius ball in OPT. The set Pt in step 19 is sort of a “net”
in that this point q must be close-by to some point p ∈ Pt . The “correct” branch in the Steps 17–24
is the one that picks this p (we do not know which one it is, so we recurse over all). Given this p,
there are two cases. Eitherp is close to an OPT center with a certain radius r̂t , in which case (p, t ) is
added toA. Or,p is far from all such centers, in which case we can add a significant number of tuples
to D. At this point, a potential function argument shows that O (2τ ) = O (poly log logk ) depth of
recursion suffices. To show why the branching factor is under control (or why the running time is
bounded), one shows that the size of the net Pt is small; indeed, |Pt | is proven to be ≤ O (log logk ).
Therefore, the total running time of the enumeration procedure is (log logk ) (poly log log k ) = o(k ).

Define γ0 := 8 log logk · log log logk . This parameter sets an upper bound on the depth of the
recursion. The algorithm is run with Enum(∅, ∅,γ0). The proof that we get a polynomial time
(O (1),O (1))-bicriteria approximation algorithm follows from three lemmas. Lemma 4.5 shows
that if Step 11 is true with a consistent pair (A,D), then the output in Step 14 is a (O (1),O (1))-
approximation. Lemma 4.6 shows that indeed Step 11 is true forγ0 as set. Finally, Lemma 4.7 shows
with such a γ0, the algorithm runs in polynomial time.

Lemma 4.5. If (A,D) is a consistent pair such that Step 11 is true, then the solution returned is an

(8, 10)-factor bicriteria approximation algorithm for ̂I.

Proof. Since A is consistent with OPT, SA opens at most kt centers with radius ≤ 10̂rt for all
0 ≤ t < τ . By design, SB and ST open at most 8kt centers with radius 8rt for τ ≤ t ≤ L. �
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ALGORITHM 5: Enum(A,D,γ )

1 Let XG = {p : ∃ (q, t ) ∈ A s.t d (p,q) ≤ 10̂rt } denote points covered by SA;

2 if there is no feasible solution to LPNUkC (X \ XG ,A,D) then

3 Abort.// Claim 6 implies (A,D) is not consistent.

4 end

5 else

6 x∗ be a feasible solution to LPNUkC (X \ XG ,A,D);

7 end

8 Let XB = {u ∈ X \ XG : Cov≥τ (u) ≥ 1
2 } denote bottom-heavy points in x∗;

9 Let SB be the solution returned by Algorithm 4;

// By definition of τ, q = 2. Thus, this solution opens 8kt balls of radius 8̂rt for

τ ≤ t ≤ L and covers all of XB.

10 Let XT = X \ (XG ∪ XB ) denote the top heavy points in x∗;
11 if LPNUkC (XT ,A, F ∪ D) has a feasible solution xT then

12 By definition of F , in xT we have Cov≥τ (u) = 1 for all u ∈ XT ;

13 Let ST be the solution returned by Algorithm 4;

// This solution opens 8kt balls of radius 8̂rt for τ ≤ t ≤ L and covers all of XT .

14 Output (SA ∪ SB ∪ ST );

// This is a (8, 10)-approximation for the NUkC instance ̂I; see Theorem 4.5

15 end

16 else

17 for every level 1 ≤ t < τ do

18 Let Ct = {p ∈ XT s.t minLevelD (p) = t }, the set of points in XT with minLevel t ;

19 Let Pt denote any maximal subset of Ct such that any two points in Pt are at least 2̂rt apart. ;

20 for every node p in Pt do

21 Enum(A ∪ {(p, t )},D,γ − 1) ;

22 Enum(A,D ∪⋃p′ ∈B (p,5r̂t ) {(p′, t )}),γ − 1);

23 end

24 end

25 end

Lemma 4.6. Enum(∅, ∅,γ0) finds consistent (A,D) such that Step 11 is true.

Proof. For this we identify a particular execution path of the procedure Enum(A,D,γ ), that at
every point maintains a tuple (A,D) that is consistent with OPT. At the beginning of the algorithm,
A = ∅ and D = ∅, which is consistent with OPT.

Now consider a tuple (A,D) that is consistent with OPT and let us assume that we are within the
execution path Enum(A,D,γ ). Let X \ XG be the points not covered by A and let x∗ be a solution
to LPNUkC (X \ XG ,A,D). If OPT covers all top-heavy points XT using only smaller radii, then this
implies LPNUkC (XT ,A, F ∪ D) has a feasible solution implying that Step 11 is true. So, we may
assume, there exists at least one top-heavy point q ∈ XT that OPT covers using a ball radii ≥ r̂τ

around a center oq . In particular, minLevelD (q) < τ . Let q ∈ Ct for some 0 ≤ t < τ . Then, there
exists p ∈ Pt such that d (p,q) ≤ 2̂rt (due to the maximality of Pt in line 19 of the algorithm). Note
that p could be the point q itself. We now show that there is at least one recursive call where we
make non-trivial progress in (A,D). Indeed, we do this in two cases:

Case (A): OPT opens a ball of radius r̂t at a point o such that d (o,p) ≤ 5r̂t . In this case,
Step 21 maintains consistency. Furthermore, we can “charge” (p, t ) distinctly to the tuple (o, t ).
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To see this, for contradiction, let us assume that before arriving to the recursive call where (p, t )
is added to A, some other tuple (u, t ) ∈ A′ , in an earlier recursive call with (A

′
,D

′
) as parameters

charged to (o, t ). Then by definition we know that d (u,o) ≤ 5̂rt implying d (u,p) ≤ 10̂rt . Then p
would be in XG in all subsequent calls, contradicting that p ∈ XT currently.

Case (B): There is no (o, t ) ∈ OPT with d (o,p) ≤ 5r̂t . In this case, for all points p ′ ∈ B (p, 5̂rt )
we add (p ′, t ) to D and the recursive call in Step 22.

To summarize, one of the recursive calls is guaranteed to be consistent. Next, we bound the
depth of recursion. In case (A), the measure of progress is clear: We increase the size of |A|, and
it can be argued (we do so below) that the maximum size of A is at most poly log logk . Case (B) is
subtler: We definitely increase the size of D, but D could grow as large as Θ(n). Before going to the
formal proof, let us intuitively argue what “we learn” in Case (B). Recallq is covered in OPT by a ball
around the center oq . Next, since minLevel(q) = t < τ , we can infer two properties: (i) By definition
there is a point v ∈ B (q, r̂t ) such that (v, t ) � D, and (ii) d (q,oq ) ≤ r̂t since OPT must cover q with
a smaller radius than r̂t due to (A,D) being consistent. Together, we get d (v,oq ) ≤ 2̂rt , that is,
v ∈ B (oq , 2̂rt ). Now also note that since d (p,q) ≤ 2̂rt by the definition of p from the paragraph
above in the proof. Therefore, d (p,oq ) ≤ 3̂rt . Now, since in case (B), we place (u, t ) in the set D for
all pointsu ∈ B (p, 5̂rt ), we can conclude that we have placed (u, t ) ∈ D for all pointsu ∈ B (oq , 2̂rt )
as well. This is “new information,” since for the current D we know that for at least one point
v ∈ B (oq , 2̂rt ), we had (v, t ) � D.

Formally, we define the following potential function. Let Oτ denote the centers in OPT around
which balls of radius r̂ j , j < τ have been opened. Given the set D, for 0 ≤ t < τ and for all o ∈ Oτ ,

define the indicator variable Z (D )
o,t , which is 1 if for all points u ∈ B (o, 2̂rt ), we have (u, t ) ∈ D and

0 otherwise.

Φ(A,D) := |A| +
∑

o∈Oτ

τ∑

t=0

Z (D )
o,t .

Note that Φ(∅, ∅) = 0. From the previous paragraph, we conclude that in both case (A) or case (B),
the potential increases by at least 1. Finally, for any consistentA,D we can upper bound Φ(A,D) as
follows. Since A is consistent, |A| ≤ ∑τ

t=0 2t ≤ 2τ+1 = 2 logL = 2 log logk . The second term in Φ is
at most 2τ+1 · τ = 2 logL(log logL + 1). Thus, in at most 4 log logk · (log log logk + 1) < γ0 steps
we reach a consistent pair (A,D) with Step 11 true. �

Lemma 4.7. Enum(∅, ∅,γ0) runs in polynomial time for large enough k .

Proof. Each single call of Enum is clearly polynomial time, and so we bound the number of
recursive calls. To this end, we first bound the number of recursive calls in a single execution of
Enum(A,D,γ ). For a fixed tuple (A,D), Algorithm 5 invokes two recursive calls for each p ∈ Pt for
every level t such that 0 ≤ t < τ . In what follows, we bound |Pt | to be at mostO (log logk ) for every
0 ≤ t < τ , and hence the overall number of recursive calls in one execution of Algorithm 5 would
be O (τ · log logk ) = O (log logk · log log logk ). Finally, since the depth of the recursion is at most
γ0 = 8 log logk · log log logk , we get that the overall number of recursive calls to the algorithm is
at most 2poly log log k = o(k ).

To complete the proof, we bound |Pt | to be at most O (log logk ) for every 0 ≤ t < τ . Indeed,
notice that by definition of Pt in Algorithm 5 in line 19, the r̂t balls around every point p ∈ Pt

are disjoint. Moreover, since Pt ⊆ Ct and Ct are all points p ∈ XT with minLevelD (p) = t , we can
infer two things: First, by virtue of p being in XT , we get that Cov≥τ (p) < 1

2 , and, second, since
minLevelD (p) = t , p receives no coverage from balls of radius larger than r̂t . Hence, we can con-
clude that

∑τ−1
t ′=t Covt ′ (p) ≥ 1

2 .
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To summarize, we have that
∑τ−1

t ′=t

∑
q∈B (p, r̂t ′ ) x

∗
q,t ′ ≥

1
2 for all p ∈ Pt , and, moreover, the balls of

radius r̂t around points in Pt are disjoint. These two suffice to establish a bound on |Pt |. Indeed, note
that 1

2 |Pt | ≤
∑

p∈Pt

∑τ−1
t ′=t

∑
q∈B (p, r̂t ′ ) x

∗
q,t ′ ≤

∑τ−1
t ′=t

∑
q∈X x∗q,t ′ ≤

∑τ−1
t ′=t kt ′ ≤ 2 · 2τ−1 = O (log logk ).

Here, the first inequality is from the argument in the preceding paragraph, the second inequal-
ity is from the disjointness of the balls of radius r̂t around points in Pt , the third inequality follows
from the budgets at different levels, and the fourth inequality is a simple geometric sum. �

5 CONCLUSION

In this article we initiate the study of the NUkC problem that generalizes the classic k-center
problem and the k-center with outlier problem. We show that no non-trivial unicriterion approx-
imation is possible for NUkC, and complement it with an (O (1),O (1))-bicriteria result. We also
give a 2-approximation for the k-center with outlier problem, and also a (1 +

√
5)-approximation

when there are only two types of radii. At a conceptual level, we show a close connection between
NUkC and the RMFC-T problem.

The main question left open from this work is to obtain an unicriterion approximation algo-
rithm for NUkC when there are only constantly many types of radii. Our hardness reduction fails,
since the RMFC-T problem is indeed polynomial time solvable when the height of the tree, which
corresponds to the number of distinct radii, is a constant. We believe there should be an O (1)-
approximation for NUkC when the number of types of radii is a constant.
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