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Abstract
Given a non-negative n × m real matrix A, the matrix scaling problem is to determine
if it is possible to scale the rows and columns so that each row and each column
sums to a specified positive target values. The Sinkhorn–Knopp algorithm is a simple
and classic procedure which alternately scales all rows and all columns to meet these
targets. The focus of this paper is the worst-case theoretical analysis of this algorithm.
We present an elementary convergence analysis for this algorithm that improves upon
the previous best bound. In a nutshell, our approach is to show (i) a simple bound
on the number of iterations needed so that the KL-divergence between the current
row-sums and the target row-sums drops below a specified threshold δ, and (ii) then
show that for a suitable choice of δ, whenever KL-divergence is below δ, then the
�1-error or the �2-error is below ε. The well-known Pinsker’s inequality immediately
allows us to translate a bound on the KL divergence to a bound on �1-error. To bound
the �2-error in terms of the KL-divergence, we establish a new inequality, referred to
as (KL vs �1/�2). This inequality is a strengthening of Pinsker’s inequality and may
be of independent interest.
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396 D. Chakrabarty, S. Khanna

1 Introduction

In the matrix scaling problem one is given an n × m non-negative, non-zero real
matrix A, and positive vectors r ∈ R

n
>0 and c ∈ R

m
>0 with the same �1 norm

∑n
i=1 ri =∑m

j=1 c j = h. The objective is to determine if there exist diagonal matrices R ∈ R
n×n

and S ∈ R
m×m such that the i th row of thematrix R AS sums to ri for all 1 ≤ i ≤ n and

the j th column of R AS sums to c j for all 1 ≤ j ≤ m. Of special importance is the case
when n = m and r ≡ c ≡ 1n , the n-dimensional all-ones vector—the (1, 1)-matrix
scaling problemwishes to scale the rows and columns of A tomake it doubly stochastic.
This problem arises in many different areas ranging from transportation planning
[13,27] to quantum mechanics [1,35]; we refer the reader to a recent comprehensive
survey by Idel [16] for more examples.

One of the most natural algorithms for the matrix scaling problem is the following
Sinkhorn–Knopp algorithm [36,37], which is known by many names including the
RAS method [5] and the Iterative Proportional Fitting Procedure [33]. The algorithm
starts off by multiplicatively scaling all the columns by the columns-sum times c j to
get a matrix A(0) with column-sums c. Subsequently, for t ≥ 0, it obtains the B(t)

by scaling each row of A(t) by the respective row-sum times ri , and obtain A(t+1) by
scaling each column of B(t) by the respective column sums time c j . More precisely,

A(0)
i j := Ai j

∑n
i=1 Ai j

·c j ; ∀t ≥ 0, B(t)
i j := A(t)

i j
∑m

j=1 A(t)
i j

·ri , A(t+1)
i j := B(t)

i j
∑n

i=1 B(t)
i j

·c j

(SK)
The above algorithm is simple and easy to implement and each iteration takes

O(nnz(A)), the number of non-zero entries of A. Furthermore, it has been known for
almost five decades [14,36–38] that if A is (r, c)-scalable then the above algorithm
asymptotically1 converges to a right solution. More precisely, given ε > 0, there is
some finite t by which one obtains a matrix which is “ε-close to having row- and
column-sums r and c”. Since the rate depends on how we measure “ε-closeness”, we
look at two natural error definitions. For any t , let r(t) := A(t)1m denote the vector

of row-sums of A(t). Similarly, we define c(t) := B(t)�1n to be the vector of the
column-sums of B(t). Note that

∑n
i=1 r

(t)
i = ∑m

j=1 c
(t)
j = h for all t . The error of the

matrix At (the error of matrix Bt similarly defined) is

�1-error : error1(At ) := ||r(t) − r||1 �2-error : error2(At ) := ||r(t) − r||2

1 Computationally, this asymptotic viewpoint is unavoidable in the sense that there are simple examples
for which the unique matrix scaling matrices need to have irrational entries. For instance, consider the

following example from Rothblum and Schneider [32]. The matrix is

[
1 1
1 2

]

with r ≡ c ≡ [1, 1]�. The

unique (up to scaling) R and S matrices are

[
(
√
2 + 1)−1 0

0 (
√
2 + 2)−1

]

and

[√
2 0
0 1

]

, respectively, giving

R AS =
[
2 − √

2
√
2 − 1√

2 − 1 2 − √
2

]

.
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Matrix scaling 397

The main objective of this note is to understand the number of iterations this simple
algorithm takes to attain an error of≤ ε in the worst case. We give simple convergence
analysis for both error norms which improves upon previously known results.

Theorem 1 Given a matrix A ∈ R
n×m
≥0 which is (r, c)-scalable, and any ε > 0, the

Sinkhorn–Knopp algorithm

1. in time t = O
(

h2 ln(Δ/ν)

ε2

)
returns a matrix At or Bt with �1-error ≤ ε.

2. in time t = O
(

h ln (Δ/ν) ·
(
1
ε

+ ρ

ε2

))
returns a matrix At or Bt with �2-error

≤ ε.

Here h = ∑n
i=1 ri = ∑m

j=1 c j , ρ = max(maxi ri ,max j c j ), ν = mini, j :Ai j >0 Ai j

maxi, j Ai j
, and

Δ = max j |{i : Ai j > 0}| is the maximum number of non-zeros in any column of A.

For the special case of n = m and r ≡ c ≡ 1n , we get the following as a corollary.

Corollary 1 Given a matrix A ∈ Z
n×n
≥0 which is (1, 1)-scalable, and any ε > 0, the

Sinkhorn–Knopp algorithm

1. in time t = O
(

n2 ln(Δ/ν)

ε2

)
returns a matrix At or Bt with �1-error ≤ ε.

2. in time t = O
(

n ln(Δ/ν) ·
(
1
ε

+ 1
ε2

))
returns a matrix At or Bt with �2-error

≤ ε.

Here Δ = max j |{i : Ai j > 0}| is the maximum number of non-zeros in any column
of A.

Remark 1 To our knowledge, the �1-error hasn’t been explicitly studied2 in the litera-
ture, although for small ε ∈ (0, 1) the same can be deduced from previous papers on
matrix scaling [15,17,20,22]. One of our main motivations to look at �1-error arose
from the connections to perfect matchings in bipartite graphs as observed by Linial,
Samorodnitsky andWigderson [22]. For the �2 error, which is the better studied notion
in the matrix scaling literature, the best analysis is due to Kalantari et al. [19,20]. They
give a Õ(ρh2/ε2) upper bound on the number of iterations for the general problem,
and for the special case when m = n and the square matrix has positive permanent
(see [19]), they give a Õ(ρ(h2 − nh + n)/ε2) upper bound. Thus, for (1, 1)-scaling,
they get the same result as in Corollary 1. We get a quadratic improvement on h in the
general case, and we think our proof is more explicit and simpler.

Remark 2 Both parts of Theorem 1 and Corollary 1 are interesting in certain regimes
of error. When the error ε is “small” (say, ≤ 1) so that 1/ε2 ≥ 1/ε, then statement 2
of Corollary 1 implies statement 1 by Cauchy-Schwarz.

However, this breaks down when ε is “large” (say ε = δn for some constant δ > 0).
In that case, statement 1 implies that in O(ln n/δ2) iterations, the �1-error is ≤ δn,
but Statement 2 implies that in O(ln n/δ2) iterations, only the �2-error is ≤ δn (the
�1-error could be large). This “large �1-error regime” is of particular interest for an
application to approximate matchings in bipartite graphs discussed below.

2 After the first version of this paper was made public, we were pointed to concurrent work by Altschuler,
Weed and Rigollet [4] studying the �1-error and obtaining the same result as part 1 of Theorem 1.
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398 D. Chakrabarty, S. Khanna

Applications to Parallel Algorithms for Bipartite Perfect Matching. As a corollary,
we get the following application, first pointed by Linial et al. [22], to the existence
of perfect matchings in bipartite graphs. Let A be the adjacency matrix of a bipartite
graph G = (L ∪ R, E) with Ai j = 1 iff (i, j) ∈ E . If G has a perfect matching, then
clearly there is a doubly stochastic matrix X in the support of A. This suggests the
algorithm of running the Sinkhorn–Knopp algorithm to A, and the following claim
suggests when to stop. Note that each iteration can be run in O(1) parallel time with
m-processors where m is the number of edges.

Lemma 1 If we find a column (or row) stochastic matrix Y in the support of A such
that error1(Y ) ≤ nε, then G has a matching of size at least n(1 − ε).

Proof Suppose Y is column stochastic. Given S ⊆ L , consider
∑

i∈S, j∈Γ S Yi j = |S|+
∑

i∈S

(∑n
j=1 Yi j − 1

)
≥ |S| −∑n

i=1

∣
∣
∣
∑n

j=1 Yi j − 1
∣
∣
∣ ≥ |S| − error1(Y ) ≥ |S| − nε.

On the other hand,
∑

i∈S, j∈Γ S Yi j ≤ ∑
j∈Γ S

∑n
i=1 Yi j = |Γ S|. Therefore, for every

S ⊆ L , |Γ S| ≥ |S| − nε. The claim follows by approximate Hall’s theorem. ��
Corollary 2 (Fast Parallel ApproximateMatchings) Given a bipartite graph G of max-
degree Δ and an ε ∈ (0, 1), O(lnΔ/ε2)-iterations of Sinkhorn–Knopp algorithm
suffice to distinguish between the case when G has a perfect matching and the case
when the largest matching in G has size at most n(1 − ε).

Thus the approximate perfect matching problem in bipartite graphs is in NC for ε

as small as polylogarithmic in n. This is not a new result and can indeed be obtained
from the works on parallel algorithms for packing-covering LPs [3,23,25,40], but the
Sinkhorn–Knopp algorithm is arguably simpler.

Remark 3 At present, we do not know if the dependence on h and ε in Theorem 1 is
tight. The best lower bound examples we know take 	(h/ε)-rounds to achieve ε �1-
error. We think that the result asserted in our theorem is tight, but we currently cannot
prove this. Given that Sinkhorn–Knopp is such a fundamental algorithm, closing this
gap is an important and interesting question.

1.1 Perspective

Asmentioned above, thematrix scaling problem and in particular the Sinkhorn–Knopp
algorithm has been extensively studied over the past 50 years. We refer the reader to
Idel’s survey [16] and the references within for a broader perspective. Below, we
mention works which we feel are most relevant to our paper.

We have already discussed the previously best known, in their dependence on h,
analysis for the Sinkhorn–Knopp algorithm inRemark 1. For the special case of strictly
positive matrices, better rates are known. Kalantari and Khachiyan [17] showed that
for positive matrices and the (1, 1)-scaling problem, the Sinkhorn–Knopp algorithm
obtains �2 error ≤ ε in O(

√
n ln(1/ν)/ε)-iterations; this result was extended to the

general matrix scaling problem by Kalantari et al. [20]. In a different track, Franklin
and Lorenz [14] show that in fact the dependence on ε can be made logarithmic, and
thus the algorithm has “linear convergence”, however their analysis3 has a polynomial

3 [14] never make the base of the logarithm explicit, but their proof shows it can be as large as 1 − 1/ν2.
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Matrix scaling 399

dependence of (1/ν). These results were improved in subsequent works of Soules [38]
and Knight [21]; we refer the reader to Idel’s survey [16] for more details. All these
results use the positivity crucially.

As mentioned in the last remark in the previous subsection, the Sinkhorn–Knopp
algorithm has polynomial dependence on the error parameter and therefore is not
a polynomial time approximation in the complexity theoretic sense. We conclude
by briefly describing bounds obtained by other algorithms for the matrix scaling
problem whose dependence on ε is logarithmic rather than polynomial. Kalantari
and Khachiyan [18] describe a method based on the ellipsoid algorithm which runs in
time O(n4 ln(n/ε) ln(1/ν)). The first strongly polynomial time approximation scheme
(with no dependence on ν) was due to Linial, Samoridnitsky, andWigderson [22] who
gave a Õ(n7 ln(h/ε)) time algorithm. Rote and Zachariasen [31] improved this to
a O(n4 ln(h/ε)) time algorithm via reduction to network flow prolems. Much more
recently, two independent works obtain vastly improved running times for matrix
scaling. Cohen et al. [10] give Õ(nnz(A)3/2) time algorithm, while Allen-Zhu et al.
[2] give a Õ(n7/3+nnz(A)·(n+n1/3h1/2)) time algorithm; the tildes in both the above
running times hide the logarithmic dependence on ε and ν. To compare, recall that
Theorem 1 shows that the Sinkhorn–Knopp algorithm runs in time O(nnz(A)h2/ε2)

time (for �1-error).

2 Entropyminimization viewpoint of the Sinkhorn–Knopp algorithm

There have been many approaches (see Idel [16], Section 3 for a discussion) towards
analyzing the Sinkhorn–Knopp algorithm including convex optimization and log-
barrier methods [6,17,20,24], non-linear Perron-Frobenius theory [9,14,17,26,38],
topological methods [7,29], connections to the permanent [19,22], and the entropy
minimization method [8,11,12,15] which is what we use for our analysis.

We briefly describe the entropy minimization viewpoint. Given two non-negative
matrices M and N let us define the Kullback-Leibler divergence4 between M and N
as follows

D(M, N ) := 1

h

∑

1≤i≤n

∑

1≤ j≤m

Mi j ln

(
Mi j

Ni j

)

(1)

with the convention that the summand is zero if both Mi j and Ni j are 0, and is ∞ if
Mi j > 0 and Ni j = 0. Let Φr be the set of n × m matrices whose row-sums are r and
letΦc be the set of n ×m matrices whose column sums are c. Given matrix A suppose
we wish to find the matrix A∗ = argminB∈Φr ∩Φc D(B, A). One algorithm for this is
to use the method of alternate projections with respect to the KL-divergence [8] (also
known as I -projections [11]) which alternately finds the matrices inΦr andΦc closest
in the KL-divergence sense to the current matrix at hand, and then sets the minimizer
to be the current matrix. It is not too hard to see (see Idel [16], Observation 3.17 for a
proof) that the above alternate projection algorithm is precisely the Sinkhorn–Knopp
algorithm. Therefore, at least in this sense, the right metric to measure the distance

4 The KL-divergence is normally stated between two distributions and doesn’t have the 1/h factor. Also
the logarithms are usually base 2.
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400 D. Chakrabarty, S. Khanna

to optimality is not the �1 or the �2 error as described in the previous section, but the
rather the KL-divergence between the normalized vectors as described below.

Let π
(t)
r := r(t)/h be the n-dimensional probability vector whose i th entry is

r(t)
i /h; similarly define them-dimensional vectorπ(t)

c . Letπr denote then-dimensional
probability vector with the i th entry being ri/h; similarly define πc. Recall that the
KL-divergence between two probability distributions p, q is defined asDK L(p||q) :=∑n

i=1 pi ln(qi/pi ). The following theorem gives the convergence time for the KL-
divergence.

Theorem 2 If the matrix A ∈ R
n×m
≥0 is (r, c)-scalable, then for any δ > 0 there is

a t ≤ T = �
(
ln(1+2Δ/ν)

δ

)
� with either DK L(πr||π(t)

r ) ≤ δ or DK L(πc||π(t)
c ) ≤ δ.

Recall, ρ = max(maxi ri ,max j c j ), ν = mini, j :Ai j >0 Ai j

maxi, j Ai j
, and Δ = max j |{i : Ai j >

0}| is the maximum number of non-zeros in any column of A.

Proof Let Z := R AS be a matrix with row-sums r and column-sums c for diagonal
matrices R, S. Recall A(0) is the matrix obtained by column-scaling A [see (SK)].
Note that the minimum non-zero entry in column j of A(0)

j is ≥ νc j
Δ
.

Lemma 2 D(Z , A(0)) ≤ ln(1 + 2Δ/ν) and D(Z , At ) ≥ 0 for all t .

Proof By definition,

D(Z , A(t)) = 1

h

m∑

j=1

n∑

i=1

Zi j ln

(
Zi j

A(t)
i j

)

= 1

h

m∑

j=1

c j

n∑

i=1

Zi j

c j
ln

(
Zi j

A(t)
i j

)

For a fixed j , the vectors
(

Z1 j
c j

,
Z2 j
c j

, . . . ,
Znj
c j

)
and

(
A(t)
1 j
c j

,
A(t)
2 j
c j

, . . . ,
A(t)

nj
c j

)

are probabil-

ity vectors, and therefore the above is a sum of c j -weighted KL-divergences which is
always non-negative. For the upper bound, one canuse the fact (Inequality 27, [34]) that

for any twodistributions p andq, D(p||q) ≤ ln(1+ ||p−q||22
qmin

) ≤ ln(1+ 2
qmin

)whereqmin
is the smallest non-zero entry ofq. For our purpose,we note that theminimumnon-zero

probability,qmin, of the
A(0)

j
c j

distribution is≥ ν/Δ. Therefore, the second summand is at

most ln(1+2Δ/ν) giving us D(Z , A(0)) ≤ 1
h

∑m
j=1 c j ·ln(1+2Δ/ν) = ln(1+2Δ/ν).

This ends the proof of Lemma 2. ��.

Lemma 3

D(Z , A(t)) − D(Z , B(t)) = DK L(πr||π(t)
r ) and D(Z , B(t)) − D(Z , A(t+1))

= DK L(πc||π(t)
c )
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Proof The LHS of the first equality is simply

1

h

m∑

j=1

n∑

i=1

Zi j ln

(
B(t)

i j

A(t)
i j

)

= 1

h

m∑

j=1

n∑

i=1

Zi j ln

(
ri

r(t)
i

)

= 1

h

n∑

i=1

ln

(
ri

r(t)
i

)
m∑

j=1

Zi j

=
n∑

i=1

(ri

h

)
· ln

(
ri/h

r(t)
i /h

)

since
∑m

j=1 Zi j = ri . The last summand is precisely DK L(πr||π(t)
r ). The other equa-

tion follows analogously. This ends the proof of Lemma 3. ��.

The above two lemmas easily imply the theorem. If for all 0 ≤ t ≤ T , both
DK L(πr||π(t)

r ) > δ and DK L(πc||π(t)
c ) > δ, then substituting in Lemma 3 and

summing we get D(Z , A(0)) − D(Z , A(T +1)) > T δ > ln(1 + 2Δ/ν) contradicting
Lemma 2. This concludes the proof of Theorem 2. ��

Theorem 1 follows from Theorem 2 using connections between the KL-divergence
and the �1 and �2 norms. One is the following famous Pinsker’s inequality which
allows us to easily prove part 1 of Theorem 1. Given any two probability distributions
p, q,

DK L(p||q) ≥ 1

2
· ||p − q||21 (Pinsker)

Proof (Theorem 1, Part 1) Apply (Pinsker) on the vectors πr and π
(t)
r to get

DK L(πr||π(t)
r ) ≥ 1

2h2 ||r(t) − r||21

Set δ := ε2

2h2
and apply Theorem 2. In O

(
h2 ln(Δ/ν)

ε2

)
time we would get a matrix with

δ > DK L(πr||π(t)
r ) which from the above inequality would imply ||r(t) − r||1 ≤ ε.

This proves part 1 of Theorem 1. ��

To prove Part 2, we need a way to relate the �2 norm and the KL-divergence. In
order to do so, we prove a different lower bound which implies Pinsker’s inequality
(with a worse constant), but is significantly stronger in certain regimes. This may be
of independent interest in other domains. Below we state the version which we need
for the proof of Theorem 1, part 2. This is an instantiation of the general inequality
Lemma 5 which we prove in Sect. 3.
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402 D. Chakrabarty, S. Khanna

Lemma 4 Given any pair of probability distributions p, q over a finite domain, define
A := {i : qi > 2pi } and B := {i : qi ≤ 2pi }. Then,

DK L(p||q) ≥ (1 − ln 2) ·
(

∑

i∈A
|qi − pi | +

∑

i∈B

(qi − pi )
2

pi

)

(KL vs �1/�2)

Proof (Theorem 1, Part 2) We apply Lemma 4 on the vectors πr and π
(t)
r .

Lemma 4 gives us

DK L(πr||π(t)
r ) ≥ C ·

(
1

h

∑

i∈A

|r(t)
i − ri | + 1

h

∑

i∈B

(r(t)
i − ri )

2

ri

)

≥ C

h

(
∑

i∈A

|r(t)
i − ri | + 1

ρ

∑

i∈B

(r(t)
i − ri )

2

)

where C = 1 − ln 2. If the second summand in the parenthesis of the RHS is ≥
1
2 ||r(t) − r||22, then we get DK L(πr||π(t)

r ) ≥ C
2ρh ||r(t) − r||22. Otherwise, we have

DK L(πr||π(t)
r ) ≥ C√

2h
||r(t) − r||2, where we used the weak fact that the sum of some

positive numbers is at least the square-root of the sum of their squares. In any case,
we get the following

DK L(πr||π(t)
r ) ≥ min

(
C

2ρh
||r(t) − r||22,

C√
2h

||r(t) − r||2
)

(2)

To complete the proof of part 2 of Theorem 1, we set δ := C

2h
(
1
ε
+ ρ

ε2

) . In partic-

ular, this implies that δ < min
(

εC
2h , Cε2

2hρ

)
. Applying Theorem 2, we get that in

O
(

h ln (Δ/ν) ·
(
1
ε

+ ρ

ε2

))
iterations, wewould get amatrixwithDK L (πr||π(t)

r ) ≤ δ.

If the minimum of the RHS of (2) is the first term, then we get ||r(t) − r||22 ≤
2ρh
C · δ <

2ρh
C · Cε2

2hρ
= ε2, implying the �2-error is ≤ ε. If the minimum is the second

term, then we get ||r(t) − r||2 ≤
√
2h

C · δ <
√
2h

C · εC
2h < ε. This completes the proof of

part 2 of Theorem 1. ��

3 New lower bound on the KL-divergence

We now establish a new lower bound on KL-divergence which yields (KL vs �1/�2)
as a corollary.

Lemma 5 Let p and q be two distributions over a finite n-element universe. For any
fixed θ > 0, define the sets Aθ := {i ∈ [n] : qi > (1 + θ)pi } and Bθ = [n] \ Aθ =
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{i ∈ [n] : qi ≤ (1 + θ)pi }. Then we have the following inequality

DK L(p||q) ≥
(

1 − ln(1 + θ)

θ

)

·
⎛

⎝
∑

i∈Aθ

|qi − pi | + 1

θ

∑

i∈Bθ

pi

(
qi − pi

pi

)2
⎞

⎠ (3)

When θ = 1, we get (KL vs �1/�2).

Proof We need the following fact which follows from calculus; we provide a proof
later for completeness. ��
Lemma 6 Given any θ > 0, define aθ := ln(1+θ)

θ
and bθ := 1

θ

(
1 − ln(1+θ)

θ

)
. Then,

– For t ≥ θ , (1 + t) ≤ eaθ t

– For t ≤ θ , (1 + t) ≤ et−bθ t2

Define ηi := qi −pi
pi

. Note that Aθ = {i : ηi > θ} and Bθ is the rest. We can write the
KL-divergence as follows

DK L(p||q) :=
n∑

i=1

pi ln(pi/qi ) = −
n∑

i=1

pi ln(1 + ηi )

For i ∈ Aθ , since ηi > θ , we upper bound (1+ηi ) ≤ eaθ ηi using Lemma 6. For i ∈ Bθ ,
that is ηi ≤ θ , we have the upper bound (1+ηi ) ≤ eηi −bθ η2i using Lemma 6. Lastly, we
note

∑
i piηi = 0 since p, q both sum to 1, implying

∑
i∈Bθ

piηi = −∑
i∈Aθ

piηi .
Putting all this in the definition above we get

DK L(p||q) ≥ −aθ ·
∑

i∈Aθ

piηi −
∑

i∈Bθ

piηi + bθ

∑

i∈Bθ

piη
2
i

= (1 − aθ )
∑

i∈Aθ

piηi + bθ

∑

i∈Bθ

piη
2
i

The proof of inequality (3) follows by noting that bθ = 1−aθ

θ
. This completes the proof

of Lemma 5. ��
Proof of Lemma 6 The proof of both facts follow by proving non-negativity of the
relevant function in the relevant interval. Recall aθ = ln(1+θ)/θ and bθ = 1

θ
(1−aθ ).

We start with the following three inequalities about the log-function.

For all z > 0, z + z2/2 > (1+ z) ln(1+ z) > z and ln(1+ z) > z − z2/2 (4)

The third inequality in (4) implies aθ > 1 − θ/2 and thus, bθ < 1/2. The first

inequality in (4) implies aθ <
1+ θ

2
1+θ

which in turn implies bθ > 1/2(1 + θ). For
brevity, henceforth let us lose the subscript on aθ and bθ .

Consider the function f (t) = eat − (1 + t). Note that f ′(t) = aeat − 1 which
is increasing in t since a > 0. So, for any t ≥ θ , we have f ′(t) ≥ aeaθ − 1 =
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(1+θ) ln(1+θ)
θ

−1 ≥ 0, by the second inequality in (4). Therefore, f is increasing when
t ≥ θ . The first part of Lemma 6 follows since f (θ) = 0 by definition of a.

Consider the function g(t) = et(1−bt) − (1 + t). Note that g(0) = g(θ) = 0. We
break the argument in two parts: we argue that g(t) is strictly positive for all t ≤ 0, and
that g(t) is strictly positive for t ∈ (0, θ). This will prove the second part of Lemma 6.

The first derivative is g′(t) = (1 − 2bt)et(1−bt) − 1 and the second derivative is
g′′(t) = et(1−bt) · (

(1 − 2bt)2 − 2b
)
. Since b < 1/2, we have 2b < 1, and thus for

t ≤ 0, g′′(t) > 0. Therefore, g′ is strictly increasing for t ≤ 0. However, g′(0) = 0,
and so g′(t) < 0 for all t < 0. This implies g is strictly decreasing in the interval
t < 0. Noting g(0) = 0, we get g(t) > 0 for all t < 0. This completes the first part of
the argument.

For the second part, we first note that g′(θ) < 0 since b > 1
2(1+θ)

. That is, g is
strictly decreasing at θ . On the other hand g is increasing at θ . To see this, looking at
g′ is not enough since g′(0) = 0. However, g′′(0) > 0 since b < 1/2. This means that
0 is a strict (local) minimum for g implying g is increasing at 0. In sum, g vanishes at
0 and θ , and is increasing at 0 and decreasing at θ . This means that if g does vanish
at some r ∈ (0, θ), then it must vanish once again in [r , θ) for the it to be decreasing
at θ . In particular, g′ must vanish three times in (0, θ) and thus four times in [0, θ)

since g′(0) = 0. This in turn implies g′′ vanishes three times in [0, θ) which is a
contradiction since g′′ is a quadratic in t multiplied by a positive term.

We end by proving (4). This also follows the same general methodology. Define
p(z) := (1 + z) ln(1 + z) − z and q(z) := p(z) − z2/2. Differentiating, we get
p′(z) = ln(1+ z) > 0 for all z > 0, and q ′(z) = ln(1+ z)− z < 0 for all z > 0. Thus,
p is increasing, and q is decreasing, in (0,∞). The first two inequalities of (4) follow
since p(0) = q(0) = 0. To see the third inequality, define r(z) = ln(1+ z)− z + z2/2
and observe r ′(z) = 1

1+z − 1 + z = z2
1+z which is > 0 if z > 0. Thus r is strictly

increasing, and the third inequality of (4) follows since r(0) = 0. ��

3.1 Comparison with other well-known inequalities

We connect (KL vs �1/�2) with two well known lower bounds on the KL-Divergence.
First we compare with Pinsker’s inequality (Pinsker). To see that (KL vs �1/�2)
generalizes (Pinsker) with a weaker constant, note that

||p − q||21 =
(

∑

i∈A
|qi − pi | +

∑

i∈B
|qi − pi |

)2

≤ 2

(
∑

i∈A
|qi − pi |

)2

+2

(
∑

i∈B
pi

|qi − pi |
pi

)2

The first parenthetical term above, since it is ≤ 1, is at most the first summation in
the parenthesis of (KL vs �1/�2). The second parenthetical term above, by Cauchy-
Schwarz, is at most the second summation in the parenthesis of (KL vs �1/�2). Thus
(KL vs �1/�2) implies
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DK L(p||q) ≥ (1 − ln 2)

2
||p − q||21

On the other hand, theRHSof (KLvs �1/�2) can bemuch larger than that of (Pinsker).
For instance, suppose pi = 1/n for all i , q1 = 1/n + 1/

√
n, and for i �= 1, qi =

1/n − 1
(n−1)

√
n
. The RHS of (Pinsker) is Θ(1/n) while that of (KL vs �1/�2) is

Θ(1/
√

n) which is the correct order of magnitude for DK L(p||q).
The KL-divergence between two distributions is also at least the Hellinger distance

between them. Before proceeding, let us define this distance.

Given two distributions p, q over [n], DHellinger(p, q) :=
(

n∑

i=1

(√
pi − √

qi
)2

)1/2

The following inequality is known (see Reiss [30] p 99, Pollard [28] Chap 3.3, or the
webpage [39] for a proof).

For any two distributions p, q, DK L(p||q) ≥ D2
Hellinger(p, q) (KL-vs-Hellinger)

It seems natural to compare the RHS of (KL vs �1/�2) and (KL-vs-Hellinger) (we
thank Daniel Dadush for bringing this to our attention). As the subsequent calculation
shows, the RHS of (KL vs �1/�2) is in fact Θ(D2

Hellinger(p, q)). In particular, this
implies one can obtain (by reverse engineering the argument below) part 2 of Theorem
2 via the application of (KL-vs-Hellinger) as well.
For the set A = {i : qi > 2pi }, we know √

qi + √
pi = Θ(

√
qi − √

pi ). Therefore,

∑

i∈A
(qi − pi ) =

∑

i∈A

(√
qi + √

pi
) (√

qi − √
pi

) = Θ

(
∑

i∈A

(√
qi − √

pi
)2

)

For any i ∈ B = {i : qi ≤ 2pi }, let qi = (1+ ηi )pi where −1 ≤ ηi ≤ 1. Via a Taylor
series expansion it is not hard to check

(
1 + ηi

2 − √
1 + ηi

) = Θ(η2i ) in this range of
ηi . Observing that

pi

(
qi − pi

pi

)2

= η2i pi and
(√

pi − √
qi

)2 = 2pi

(
1 + ηi

2
− √

1 + ηi

)

we get that the RHS of (KL vs �1/�2) is Θ(D2
Hellinger(p, q)).
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