Timothy J. Pierson, Travis Peters, Ronald Peterson, and David Kotz. Proximity Detection with Single-Antenna IoT Devices. In Proceedings of the ACM International Conference on Mobile Computing and Networking (MobiCom), October 2019. ACM Press. Accepted for publication. DOI 10.1145/3300061.3300120.

Abstract: Providing secure communications between wireless devices that encounter each other on an ad-hoc basis is a challenge that has not yet been fully addressed. In these cases, close physical proximity among devices that have never shared a secret key is sometimes used as a basis of trust; devices in close proximity are deemed trustworthy while more distant devices are viewed as potential adversaries. Because radio waves are invisible, however, a user may believe a wireless device is communicating with a nearby device when in fact the user's device is communicating with a distant adversary. Researchers have previously proposed methods for multi-antenna devices to ascertain physical proximity with other devices, but devices with a single antenna, such as those commonly used in the Internet of Things, cannot take advantage of these techniques.

We present theoretical and practical evaluation of a method called SNAP - SiNgle Antenna Proximity - that allows a single-antenna Wi-Fi device to quickly determine proximity with another Wi-Fi device. Our proximity detection technique leverages the repeating nature Wi-Fi's preamble and the behavior of a signal in a transmitting antenna's near-field region to detect proximity with high probability; SNAP never falsely declares proximity at ranges longer than 14 cm.

Keywords: project-thaw,ists,security,authentication,wifi

BibTeX

PDF (5035K)

Copyright © 2019 by ACM.

The copy made available here is the authors' version; for a definitive copy see the publisher's version described above.

See also earlier version pierson:snap-poster.