
CS–1994–33

Characterizing Parallel File-Access Patterns on a
Large-Scale Multiprocessor1

Apratim Purakayastha and Carla Schlatter Ellis2

David Kotz and Nils Nieuwejaar3

Michael Best4

Department of Computer Science

Duke University

Durham, North Carolina 27708–0129

October 24, 1994

1This work was supported in part by, the National Science Foundation under grant number CCR-9113170, the Na-
tional Center for Supercomputing Applications, NASA Ames Research Center under agreement number NCC 2-849,
and Thinking Machines Corporation.

2Duke University, email: [ap,carla]@cs.duke.edu
3Dartmouth College, email: [dfk,nils]@cs.dartmouth.edu
4M.I.T, email: mikeb@media.mit.edu, also affiliated with Thinking Machines Corporation

David Kotz
© Copyright 1994 by the authors�



Characterizing Parallel File-Access Patterns on a Large-Scale
Multiprocessor∗

Apratim Purakayastha and Carla Schlatter Ellis†

David Kotz and Nils Nieuwejaar‡

Michael Best§

October 24, 1994

Abstract

Rapid increases in the computational speeds of multiprocessors have not been matched by correspond-
ing performance enhancements in the I/O subsystem. To satisfy the large and growing I/O requirements
of some parallel scientific applications, we need parallel file systems that can provide high-bandwidth and
high-volume data transfer between the I/O subsystem and thousands of processors.

Design of such high-performance parallel file systems depends on a thorough grasp of the expected
workload. So far there have been no comprehensive usage studies of multiprocessor file systems. Our
CHARISMA project intends to fill this void. The first results from our study involve an iPSC/860 at
NASA Ames. This paper presents results from a different platform, the CM-5 at the National Center for
SupercomputingApplications. The CHARISMA studies are unique because we collect information about
every individual read and write request and about the entire mix of applications running on the machines.

The results of our trace analysis lead to recommendations for parallel file system design. First, the
file system should support efficient concurrent access to many files, and I/O requests from many jobs
under varying load conditions. Second, it must efficiently manage large files kept open for long periods.
Third, it should expect to see small requests, predominantly sequential access patterns, application-wide
synchronous access, no concurrent file-sharing between jobs, appreciable byte and block sharing between
processes within jobs, and strong interprocess locality. Finally, the trace data suggest that node-level write
caches and collective I/O request interfaces may be useful in certain environments.
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1 Introduction

Parallel scientific applications require not only fast computation but also a large and fast I/O subsystem to

provide the required data-transfer bandwidth. A parallel file system and I/O subsystem must be optimized for

the most common traits in the I/O workload. Unfortunately, parallel-I/O workloads have not been thoroughly

characterized. In Section 2 we see that there have been I/O-workload characterization studies of mainframes,

individual Unix workstations, distributed systems, and some scientific vector applications. For parallel sci-

entific applications, however, the few characterizations have either been educated guesses or sketchy I/O-

workload studies with selected applications.

To bridge this obvious gap in our understanding of the parallel I/O workload, we started the CHARISMA

(CHARacterizing I/O in Scientific Multiprocessor Applications) project in June 1993. CHARISMA is a co-

ordinated joint effort involving people from universities, national research laboratories, and industry.1 The

goal of this project is to collect traces from production scientific workloads, recording such details as indi-

vidual reads and writes. We collect generic I/O information from applications across many platforms along

with machine-specific information so that spatial and temporal patterns can be determined. The first results

of the CHARISMA project involve a tracing study done on an Intel iPSC/860 at NASA’s Ames research

facility[KN94]. This paper describes results from our second platform, the CM-5 at the National Center for

Supercomputing Applications (NCSA). The machine has a sizeable, established, nationwide user population.

Some of the questions that we are trying to answer from the collected data are:

• About Jobs: How many jobs ran concurrently? On how many processors did they run? How long did

they run? How many files did each job open? How many distinct applications were represented by the

jobs?

• About Files: How many files were only read, only written, or both read and written? How large were

the files? For how long were they open? How much inter-node file-sharing was there? How many

were temporary files?

• About I/O requests: What were the request sizes? How were the request sizes distributed? Which

request sizes transferred the most data? How many different request sizes were there per file? How

much sequentiality was there in access? What was the typical elapsed time between repeated reads or

writes of the same block?

• About Policies: Is there evidence to suggest usefulness of a particular kind of caching or prefetching?

Are there indications of the usefulness of deferred writes?

• About File Systems: Based on our data, what parts of existing parallel file systems need rethinking?

1An outline of the CHARISMA project is available online via the World Wide Web, at URL
http://www.cs.dartmouth.edu/research/charisma.html.
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In Section 2 we outline related work on workload characterization and parallel file system design. In

Section 3 we describe our data-collection and analysis methods. In Section 4 we discuss the results. We

conclude in Section 5 by describing our overall perspective and our future directions.

2 Background

In this section we first outline some previous efforts to characterize file I/O on various platforms. Then we

briefly describe some related multiprocessor file systems, and summarize the relevant components of the

CM-5 system.

2.1 Workload Studies

There have been many file system workload studies. Smith [Smi81] studied file-access behavior of IBM

mainframes to predict the effects of automatic file migration on files used by an interactive editor. Porcar

[Por82] analyzed dynamic trace data for files in an IBM batch environment. Floyd and Ellis [Flo86, FE89]

and Ousterhout et al. [ODH+85] studied file-access patterns from isolated Unix workstations. Baker et al.

[BHK+91] studied access patterns in Sprite, a distributed Unix system. Ramakrishnan et al. [RBK92] stud-

ied file access patterns in a commercial computing environment, on a VAX/VMS platform. The workload

was dominated by office-management and transaction-processing applications.

Studies of I/O from scientific workloads have been fairly limited in scope and generality. Del Rosario

and Choudhary [dC94] provided an informal characterization of some grand-challenge applications. Powell

[Pow77] concentrated mainly on files sizes on a Cray-1. Miller and Katz [MK91] and Pasquale and Polyzos

[PP93] studied I/O-intensive Cray applications.

Experimental studies of I/O from parallel scientific programs running on multiprocessors have been

rather limited. Crockett [Cro89] and Kotz and Ellis [Kot93] described hypothetical characterizations of a

parallel scientific file system workload. Cormen and Kotz [CK93] discussed desirable characteristics of par-

allel I/O algorithms. Reddy et al. [RB90] studied I/O from parallelized sequential applications, but their

applications were handpicked and I/O was not parallel. Cypher et al. [CHKM93] studied self-selected par-

allel scientific applications, mainly to establish temporal patterns in I/O rates. Galbreath et al. [GGL93] have

used anecdotal evidence to provide a high level picture of I/O from some parallel applications.

The only file system workload study of a production parallel scientific computation environment was

that of Kotz and Nieuwejaar [KN94], as part of our CHARISMA project. The eventual goal of CHARISMA

is to characterize differences between different platforms and programming styles; to isolate similar behav-

iors across platforms and pinpoint their causes; and to make use of that knowledge in file system and I/O

subsystem design. Kotz and Nieuwejaar [KN94] characterized I/O on an iPSC/860 at NASA Ames. This

paper describes a similar study on the NCSA CM-5, which has a larger user population and two different

programming models. We traced a wide range of applications from a large number of distinct users.
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2.2 Existing Parallel File Systems

A single, coherent parallel file-access model has not yet emerged. The parallel-I/O models are often closely

tied to the machine architecture as well as to the programming model. Nonetheless, the fundamental idea

of declustering file blocks across many disks for parallel access has been a common feature. Typically jobs

can access files in different I/O “modes”, which determine how a file pointer is shared among clients run-

ning in individual nodes [Cro89, BGST93, Kot93, Pie89, Roy93]. HFS [KS93] and the KSR1 [Ken92] file

system, use a memory mapped interface. On the nCUBE [DdR92] and in Vesta [CFPB93] the user has more

control over data layout. These systems provide a per-process logical view of the data. In PIFS (Parallel

Interleaved File System) [Dib90], the file system controls which processor handles which part of the file to

exploit memory locality. Intel’s CFS (Concurrent File System) [FPD93, Nit92, Pie89], on the other hand,

provides a Unix-like interface with a choice of four I/O modes to coordinate parallel access. On the CM-5

the I/O model depends on the programming model that is being used; one model provides a Unix-like inter-

face with different I/O modes.

2.3 The CM-5

The CM-5 has a scalable architecture, containing from tens to thousands of processing nodes (PNs) based

on RISC processors, and a few Control Processors (CPs). Each PN has its own memory. PNs can fetch in-

structions from the same address in their memories to execute the same instructions (SIMD-style), or from

different addresses to execute independent instructions (MIMD-style). Typically a group of PNs (called a

partition) is managed by a CP. Each job executes on a single partition but may exchange data with other

partitions. Within individual partitions, jobs are timeshared. The PNs communicate via two scalable inter-

processor communication networks called the Data and the Control Networks [Thi93b].

The CM-5 supports a variety of I/O devices [Thi93b, Thi93a]. Devices like the Datavault, VMEIO Host

Computer, and CM-IOPG reside on a high-speed multidrop CMIO bus and are abstracted by the CMFS file

system. However, the device of interest to us is the SDA (Scalable Disk Array). Our tracing study concen-

trates solely on the SDA file access because it was the main high-volume, high-bandwidth storage device on

the CM-5 at NCSA. The SDA is an expandable RAID-3 disk system that typically provides 25-200 Gbytes

of disk space and I/O bandwidths of 33-264 MB/sec. The SDA (or any I/O device) is managed by an IOCP

(Input/ Output Control Processor), which provides software support for file systems, device drivers, and com-

munication protocols. The SFS (Scalable File System) resides on the SDA. It is an enhancement of the Unix

file system with extensions to support parallel I/O and very large files. Moreover, each CP can have a set of

local Unix file systems with which the SFS can share name space. The Unix file system typically holds the

executables, and the user’s private files. The SFS is optimized for parallel high-volume transfer, even though

it is a fully general file system.

The CM-5 supports two primary programming models (data- and control-parallel), each with its own I/O

4



model. In this paper we characterize I/O from programs written in either CMF, a Fortran-like data-parallel

programming language, or CMMD, a control parallel messaging library. The CMF programming model

presents a single thread of control to the user; all nodes appear to be executing identical code though they

may be operating on different data. CMF I/O is a library of support routines that are layered on top of SFS.

They allow users to read and write arrays (or portions thereof) to the SDA via either special library calls or

normal Fortran READ and WRITE statements. Issues of data distribution and I/O parallelization are hidden

from the user. CMMD may be embedded in a variety of familiar programming languages like C, C++, and

f77. Under CMMD the user sees multiple threads of control, one for each PN. CMMD I/O (again layered on

top of SFS) provides a variety of I/O “modes” – in some, action is taken by a single PN; in others, all PN’s

co-operatively perform a parallel I/O [Thi93c, BGST93].

3 Tracing Methodology

The CM-5 at the National Center for Supercomputing Applications (NCSA) was chosen as our target machine

because this is one of the most widely used CM-5 machines in the United States. The user population is

distributed all across the nation and there are approximately 1000 user accounts on this machine.2 The CMF

user population dominates CMMD users by about 7 to 3.3 We have captured a large variety of generic classes

of CMF and CMMD applications.4

The CM-5 at NCSA has 512 nodes. Generally it is divided into 5 static partitions of size 32, 32, 64,

128 and 256 nodes. The partitions are reconfigurable; at times the machine is reconfigured as a single 512-

node partition depending on user needs. Each node has a RISC-based CPU, a private network interface and

4 vector units with a collective memory size of 32 MB/node. The SDA has 118 data disks and 1 parity disk

for a total capacity of about 138 Gbytes. A single file system called ‘/sda1’ resides on the SDA. The logical

block size of this file system is 29.5 KB and the physical disk block size is 59 KB.

We must concede that although we have tried to capture different programming styles, our observations

are specific to the target computing environment. This dependence is why the CHARISMA project is trying

to trace different platforms.

3.1 Trace Collection

The CHARISMA project is a multiplatform tracing project. We defined a generic set of trace records, an

appropriate subset of which can be collected at any machine. This generic set logged events such as open,

close, read, write, truncate/extend, link/unlink, etc. The format of our generic records was similar across the

2Information obtained via personal communication with NCSA CM5 systems staff.
3Information obtained via personal communication with NCSA consulting staff.
4A short description of some of the applications we traced in this study are available via the World Wide Web at URL

http://www.cs.dartmouth.edu/cs archive/pario/anecdote10.html.
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platforms.5 In addition to generic trace records, we also collected some machine specific records such as,

the Physical I/O records on the CM-5. Moreover in CMF where I/O is primarily handled at the application

level (as opposed to the ‘client’ or node level in CMMD), some ‘client’ records were not collected and some

‘client’ fields were preassigned. Table 1 summarizes the trace records and their fields.

In addition to the above fields, each record had a record-type field and timestamp fields. The read/write

records and the physical-I/O records had two sets of timestamp fields to record start and end times. The

high-precision timestamps were 8-byte integer values containing microseconds elapsed after epoch. To ac-

commodate large files (of size larger than 2 Gbytes), the file size and file offset fields were also 8-byte inte-

gers. Unique file id’s were constructed using the tuple [device number, inode number]. The application id’s

are just the process id’s unique to a partition, the client id’s are the particular node numbers in a partition.

We considered I/O only to and from the SDA. Serial NFS I/O was not traced or accounted for, because

we expected that it would have much less traffic due to limited bandwidth. Specifically, this study focuses

on parallel-I/O by user programs to and from the SDA. Hereafter, all measurements refer to the SFS on the

SDA in the CM-5 at NCSA.

3.1.1 Tracing CMF applications

We instrumented the run-time CMF I/O libraries to collect traces. CMF programs normally link to the stan-

dard CMF I/O library during compilation. During the tracing period, the normal I/O library was replaced

by our tracing library, and all CMF programs linked to the tracing library by default. Almost all CMF ap-

plications that ran on the NCSA CM-5 in the 23-day period from June 28, 1994 (about 10:15 AM) to July

20, 1994 (about 11:30 AM) were traced. The instrumentation had a mechanism for users to shut off tracing

of a particular program by setting an environment variable. Some users (for example, industrial partners of

NCSA) requested this feature and made use of it, thereby not having their applications traced. We had, how-

ever, a mechanism to count the total number of CMF programs that were compiled and run during the tracing

period even if they suppressed trace generation. Out of 1943 such jobs in that period, 1760 were traced. This

figure, however does not include programs that were compiled before June 28 (before the tracing library was

installed) and ran in the tracing period. The 1760 jobs traced represent 434 distinct6 applications run by 384

distinct users. except for 6 hour periods on Fridays when the whole machine was brought down for mainte-

nance. During the tracing period there was no other significant unexpected downtime.

We were concerned both with the degree to which tracing would affect the overall performance and with

how tracing would perturb the I/O we set out to study. We wrote the per job trace files onto the serial Unix file

system to avoid contention with SDA I/O. We buffered the trace records in memory and wrote them to the

trace file in large blocks to minimize tracing overhead. Since overhead was a big concern for the NCSA sys-

tems staff, they had some users beta-test the tracing library before installing it as default. For a wide variety
5Although we have defined a generic format, the semantics of events may be subtly different on different platforms and care must

be taken in analyzing traces.
6Applications with different path names for executables were considered distinct.
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Record Type Fields in the Record

Header format and version numbers, start date,
system type, system id,
configuration (nodes, memory, disks, etc.), timestamp unit

Application Load executable path name,
user id, application id, number of clients,
client id list

Application Exit application id
Client Open File (CMMD only) pathname,

file id, client id, file descriptor, file size,
creation time, open mode (r,w,rw,create etc.)

Application Open File application id,
file id, file descriptor, file size,
creation time, open mode

Client Close File (CMMD only) client id,
file id, file size

Application Close File application id,
file id, file size

Read/Write request operation type (r,w, sync/async etc.),
client id or application id, file descriptor,
file offset, size of I/O

Truncate/Extend client id,
file descriptor, original size, new size

Link/Unlink client id,
file id, new number of links

Set I/O Mode (CMMD only) client id,
file descriptor, new access mode

Fcntl call (CMMD only) client id,
application id, machine specific request code

Physical I/O file descriptors, operation type, application id,
number of clients, offset, size of I/O

Table 1: Different of types of trace records that were collected
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of applications the testers reported less than 5% overhead in execution time. No on-the-fly trace compaction

was necessary because disk space was not an issue with NCSA providing us 1.3 Gbytes of intermediary stor-

age. We transferred data to Duke daily, for tape storage.

3.1.2 Tracing CMMD applications

While we can classify the CMF workload as a “general” workload, the CMMD workload was self-selecting.

We developed the CMMD tracing library at Thinking Machines Corporation on an in-house version of

CMMD. Since it was developed off-site, the NCSA systems staff were reluctant to make it the default li-

brary. Hence we relied on volunteering users who linked their programs to the CMMD tracing library for us

to gather traces. We gathered traces from June 23 to July 6, for a period of two weeks. We obtained traces

from 127 jobs representing 29 distinct applications run by 11 distinct users. Because they volunteered for this

tracing study, they were all heavy (probably sophisticated) SDA users who were interested in parallel I/O be-

havior. We can perhaps classify this workload as an I/O-intensive workload compared to the “general” CMF

workload. This difference should be considered when interpreting the CMMD data.

CMMD I/O is implemented as a client/server architecture in which a privileged CM-5 host-node pro-

cess is responsible for running a server loop. We monitored CMMD I/O by piggybacking trace records on

the client/server protocols. The actual trace records were produced on the CM-5 compute nodes, communi-

cated to the host server, then written to the local Unix file system. Since communication of trace records was

embedded into the normal client/server I/O protocols we believe that perturbation was minimal.

3.2 Trace Analysis

In CMF the trace records were all emitted from the CP. Hence CMF records had timestamps from the same

clock, which meant that there was no clock skew to synchronize. In CMMD however, the PNs generated

timestamps, and hence in principle there was a clock skew problem. But the clock skew between PNs was

on the order of microseconds and not on the order of milliseconds, allowing us to ignore the skew in the

context of I/O operations that almost always took milliseconds or more to complete. Therefore, minimal

postprocessing was required before trace analysis.

4 Results

Tables 2 and 3 summarize the data collected on a day-by-day basis throughout the tracing period for CMF

and CMMD applications respectively. The tables list the number of files opened per day; each file opened

was classified by whether it was actually only read, only written, both read and written, or neither read nor

written. We also counted the number of files that were created and deleted within the same job, and called

them temporary files.

We collected both temporal and spatial information about jobs, files, and I/O requests. Since this is purely
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a workload study we do not present any performance figures, such as time to complete specific I/O requests,

etc. We first characterize jobs, then files, and then individual I/O requests. We then analyze for sequentiality,

sharing, and synchronization in access patterns.

4.1 Jobs

Figures 1 and 2 show the number of nodes used by CMF and CMMD jobs. A large number (about 60%)of

CMF jobs7 used the smallest available partition of size 32 nodes. We speculate that use of a small number of

nodes by the majority of jobs is a characteristic of any general parallel workload. The same trend was also

observed in our iPSC study [KN94]. But an appreciable number of CMF jobs as well as iPSC jobs used a

large number of nodes: more than 20% of CMF jobs use 128 nodes or more. On the other hand, since the

CMMD workload was self-selecting and included fairly large and I/O-intensive applications, we observe a

bias toward large number of nodes. More than 50% of CMMD jobs used 256 nodes or more.

The duration of CMF and CMMD jobs is shown in Figures 3 and 4. The number of CMF jobs that ran

for each quantum such as 0 to 10 seconds, 10 to 100 seconds, and so on upto 10000 to 100000 seconds were

comparable to each other. But taking a closer look we found that there were only a few distinct applications

with lifetimes between 1000 and 100000 seconds ( about 50). They were each rerun a large number of times.

In contrast, the number of distinct applications that ran for less than 1000 secs is large (more than 400). In

addition, many jobs (about 164) took less than 2 seconds to complete. We believe that these were mostly

aborted executions and would be a feature in any general workload. We did not find very short-lived jobs

in the CMMD workload, because these were run by a cooperating group of users, and are stable, debugged

applications.

We also observed that load conditions varied widely over the tracing period, typically heavy from Mon-

day to Thursday, falling off over Friday8 to Sunday. Each day’s peak was typically around 2 to 3 o’clock in

the afternoon. Clearly an effective file system must allow efficient access over a range, from small short-lived

jobs to large, long jobs and respond to varying system load conditions.

4.2 Files

In Table 2 we observe that 1760 CMF jobs opened a total of 3780 files, about 2 SDA files per job. On the

other hand, in Table 3 we see that 127 CMMD jobs opened 904 files, about 7 files per job. We attribute this

difference to two factors: that CMMD nodes could individually open files while CMF jobs only open files

collectively, and that the CMMD workload was self-selecting and I/O intensive. That the CMMD workload

was relatively I/O-intesive was also manifested by the fact that CMF jobs read 27.8 MB/file and wrote 25.2

MB/file on average, while CMMD applications read 117.5 MB/file and wrote 110.2 MB/file.9 It should be

7We have used both the words ‘job’ and ‘application’ throughout the paper. We mean an ‘application’ to be a program and a
‘job’ to be an execution of the program.

8This was partially caused by the mandatory maintenance period on Friday.
9These averages ignore the few files that were both read and written.
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noted that even the lower CMF figures are an order of magnitude bigger than what was observed in our iPSC

study (read 1.2 MB/file, wrote 3.3 MB/file). The users seem to have made use of the higher disk capacity and

bandwidth that the CM-5 offers over the iPSC at NASA Ames. Very few files (5.8% of those accessed by

CMF jobs and 5.9% of those accessed by CMMD jobs), were used for both read and write. This occurance

is consistent with observations in Unix file systems made by Floyd [Flo86], and with iPSC results. This is

not surprising, since co-ordinating parallel read-writes from several nodes is difficult.

In Table 4 we see that about 25% of CMF jobs did not open any SDA files at all. It is likely that they were

compute intensive jobs doing I/O via NFS. About 63% of CMF jobs opened 1–4 files on the SDA. In Table

5, we find that all traced CMMD jobs opened at least one SDA file, which is expected from a self-selecting

group of users interested in SDA I/O. Indeed, CMMD jobs in general opened more files on the SDA than

CMF ones. Both CMF and CMMD jobs had multiple files opened concurrently in their lifetime. Like our

iPSC study, we stress that file systems must optimize access to several concurrently open files within the

same job.

We find 3.8% of files accessed by CMF jobs (Figure 2) and 4.9% of files accessed by CMMD jobs (Figure

3) were temporary files, as opposed to 0.76% in our iPSC study. This may indicate that more applications

went for “out-of-core” solutions than on the iPSC. However, the number of temporary files are still very few

and we believe that only a few distinct applications generated those files.10

Files accessed by CMF jobs (Figure 5) as well as CMMD jobs (Figure 6) were large. About 35% of

files accessed by CMF jobs were larger than 10 MB and 50% of files accessed by CMMD jobs were larger

than 10 MB. During the tracing period, 34 opens were on files that were larger than 10 Gbytes. File sizes

observed in our iPSC study though large, were not nearly as large as observed on the SDA. We speculate

that the difference was attributable more to the available disk capacity and bandwidth than to the inherent

requirements of the workload, and that all workloads would have used more if more was available. Any

parallel file system must therefore be designed to accommodate efficient access to very large files.

Figures 7 and 8 show the durations for which files were kept open by CMF and CMMD jobs respectively.

For CMMD jobs, more than 50% of files were kept open for more than 1 hour. For CMF jobs, however, only

about 15% of files were kept open for more than 1 hour. On the whole, file open durations are much larger

than observed in Floyd’s Unix file system study [FE89]. Presumably these long durations were the result of

long-running jobs (figures 3 and 4). Along with appreciable difference in prevalent file sizes this is another

important characteristic in which this parallel file system workload has differed from Unix environments

traced.
10We found that number of temporary files were high in the days that certain applications ran. We speculate that the temporary

files were generated by only these few applications.
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4.3 I/O Request Sizes

Figures 9 and 10 show sizes of write requests from CMF and CMMD jobs respectively. For CMF jobs, the

size of 90% of write requests was between 100 and 1000 bytes. For CMMD jobs, the size of 90% of write

requests was between 10 and 500 bytes. Though write request sizes from CMF jobs were a little bigger,

we expected them to be much bigger because CMF writes are collective write requests from all nodes in a

job, while CMMD requests were from individual nodes. In CMMD jobs we observed that nodes typically

wrote small sequential portions of files. The request sizes in both the cases appeared to be insensitive to the

29.5 KB block size of the SFS. In both CMF and CMMD, more than 90% of the data were transferred by

write requests of size more than 4000 bytes although 90% of write requests were smaller than 4000 bytes.

This similar behavior across CMF, CMMD, and iPSC applications leads us to believe that this feature of

I/O requests is fundamental to a large class of parallel applications. The file system design must therefore

concentrate on optimizing both low-latency small I/O’s and high-bandwidth large I/O’s to accommodate this

bipolar workload. Figures 11 and 12 show read request sizes from CMF and CMMD applications and they

exhibit behavior similar to the write requests.

4.4 Sequentiality

Uniprocessor scientific applications access files in a predominantly sequential manner [MK91]. For paral-

lel applications we need to define sequential access carefully. As in the iPSC study, we define a sequential

request to be one at a higher file offset than the previous request, and a consecutive request to be one that

begins exactly at the same offset where the previous request finished. For CMF jobs we look at collective

application access patterns and for CMMD jobs we look at per-node access patterns. Figures 13 and 15 show

access sequentiality and consecutiveness from CMF jobs, and Figures 14 and 16 show the same from CMMD

jobs. Both CMF and CMMD jobs indeed showed predominantly sequential pattern in accessing read-only

and write-only files. Some CMF and CMMD jobs read data in reverse of the order in which it was previously

written out, which partially contributed to less measured sequentiality in read access compared to write ac-

cess. Read-write files, consistent with our observations on the iPSC, were predominantly non-sequentially

accessed from both CMF and CMMD jobs. Since accesses from CMF jobs were considered collectively from

the application, it shows more consecutiveness than CMMD applications, where we looked at per-node pat-

terns. 95% of write-only files and 60% of read-only files were accessed more than 90% consecutively from

CMF jobs while only 60% of write-only files and 20% of read-only files were accessed more than 90% con-

secutively by CMMD jobs.

4.5 I/O Request Intervals

We define the number of bytes skipped between one request and the next on the same node to be the “interval

size.” Consecutive accesses have zero interval size. Table 6 shows number of different interval sizes used for
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each file and Table 8 shows number of different request sizes used per file accessed by CMF jobs. Tables 7 and

9 show the same for files accessed from CMMD jobs. From CMF jobs 33% of files were accessed as a whole

in one request. About 40% of files accessed by CMF jobs were accessed with just 1 interval. About 79%

of those 1-interval files were 100% consecutively accessed (interval size 0). However, we had appreciable

number of 2 or 3 request sizes in files accessed by CMF jobs. This may have been caused by instances where

programmers chose to use one file to store various arrays of different sizes. From CMMD jobs about a third

of all files were accessed as a whole in one request. The percentage of files having 3 or more intervals of

access is more for CMMD than in CMF. We attribute this slight difference to the use of independent I/O-

modes from CMMD jobs. Although compared to the iPSC study the CM-5 workload exhibits less regularity,

the access patterns from both CMF and CMMD applications were still predominantly regular (that is, few

different interval and request sizes).

4.6 Synchronization

Though CMF users could perform asynchronous nodal I/O via CMMD calls11 , we found only 18 (1%) jobs

in total used it. CMMD applications also chose to do the bulk (78%) of their I/O in synchronous-sequential

mode. This mode allows nodes to read/write sequential and possibly unequal file portions in parallel. Most of

these accesses also had equal request sizes from nodes. In effect, much of CMMD I/O was done in a CMF-

like fashion. The local-independent mode was hardly ever used (0.88% of total I/O), which is expected,

because that mode does not provide efficient parallel I/O from SDA files. Synchronous-broadcast mode, in

which the file pointer is at the same file position in all nodes was used to do only 8.7% of total I/O. This mode

was predominantly used to read common information for all nodes, and was never used for write. Global-

independent mode, which allows all nodes to access a single file for independent reading and writing, was

only used to do 11.9% of total I/O. From the above data, one may be inclined to conclude that applications

only need fast synchronous I/O since apparently that is what they used predominantly. But we have anecdotal

evidence from users that indicates that they really want high-performance independent I/O but they do not

use it on the CM-5 because of poor performance. This behavior is an example of how the capabilities of an

existing machine influence user behavior.

4.7 Sharing

A shared file is one that is opened by more than 1 job or node. When the opens overlap in time the file is

said to be concurrently shared. A file is write-shared if any of the opens involve writing the file. We did not

find any files shared between jobs, although most files were shared among the nodes of a single job.

Of files written by CMF jobs (Table 10), 95% were completely unshared (that is, 0% byte-shared). This

fact is not surprising, since it is rarely meaningful for some bytes to be written multiple times. Of files read

11Just before our tracing began, CMF Version 2.1 final was installed which had this capability. Low usage of this feature may be
partially attributed to the fact that it was relatively new.
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by CMF jobs, about 24% were completely shared (100% byte-shared), replicating the data set on all nodes.

Since all bytes of those files were shared, all blocks of those files were shared as well, that is, they were 100%

block-shared. Table 10 shows that 64% of all read-only files were 100% block-shared, although only 24%

were 100% byte-shared. This difference implies that 40% of read-only files had all of their blocks shared

despite having few bytes shared, a situation called false sharing. This situation occurred when the data set

was partitioned among the nodes in such a way so that some of the file blocks contained data destined for

different nodes. Finally, files that were both read and written tended to have little byte sharing, because it is

relatively difficult to coordinate concurrent read/write access to shared data, but plenty of block sharing, for

the same reasons as above.

In CMMD jobs (Table 11) we found more byte-sharing than in CMF jobs. We do not know the reason

for this difference. It may simply be the nature of the particular CMMD applications involved.

Overall, the low amount of write sharing and the high amount of read sharing indicates that caching may

be useful, even on the nodes themselves, in addition to on the I/O control processor.

4.8 Elapsed time between re-writes and re-reads

Figures 17 and 18 show elapsed time between consecutive accesses to the same block from CMF and CMMD

jobs respectively. For CMF jobs, the re-write time was between 0.01 sec and 1 sec in 85% of re-writes. For

CMMD jobs, the re-write time was between 0.1 sec and 1 sec in 90% of re-writes. This short interval indicates

that writes could be buffered and deferred by perhaps 10 seconds. Combining this with low write sharing

across nodes, we feel that per node write caches can be useful. Reads generally showed the same behavior

as writes but there were an appreciable number of re-reads (about 10% for both CMF and CMMD) that were

about 3000 sec apart for CMF applications and 100 sec apart for CMMD applications. We attribute this to

long program loops, re-reading the same information at the beginning of each iteration.

4.9 Physical I/O

Both CMMD and CMF provide the users with the facility of “physical I/O”. Physical I/O provides the

highest-bandwidth parallel I/O to the SDA but places data in a non-transferable device-dependent manner.

In CMF only 26 jobs (less than 2% of total number of jobs), and in CMMD 23 jobs(about 19% of the total

number of jobs) used physical I/O. But physical I/O from CMF jobs accounts for 23 Gbytes of data transfer,

which is 24.4% of total I/O done by CMF jobs. Similarly physical I/O from CMMD jobs accounts for 28

Gbytes which is about 30% of total I/O done from CMMD jobs. These indicate that although many users did

not use or need this feature, but some users with significant I/O needs did find the feature very useful. We

recommend that parallel file systems provide ‘raw’ I/O backdoors such as this, until higher-level I/O becomes

comparable in speed.
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5 Conclusion

Our results describe the character of the file-access patterns on the NCSA CM-5, for two programming mod-

els: CMF data-parallel programs, and CMMD message-passing programs. Comparing the two programming

models, and comparing both to our previous results on the iPSC/860, we found both interesting similarities

and interesting differences. Write traffic (number of files only written, bytes written) was consistently higher

than read traffic. Files were not shared between jobs. Most read-only files were either completely shared

across nodes within a job or were completely unshared. Write-only files were rarely shared, re-write times

to the same blocks were short, and request sizes were small, indicating that caching write-only files may be

feasible, if a good cache-consistency solution can be found.

Across all platforms, small I/O requests dominated. To some extent, this is the result of partitioning a

data set across many processors, particularly in patterns that did not conform to the layout of data within the

file. We believe, however, that it may also be inherent in some of these applications, since we found that

CMF applications— which make only collective-I/O requests— also made small requests.

In CMMD applications we observed that most I/O was done in synchronous-sequential mode, even

though independent modes were available. Most of these synchronous-sequential accesses from CMMD ap-

plications requested an equal amount of data for all nodes. It appears that a collective-I/O request interface

from a CMMD-like environment would be useful.

We can now make comparisons with the initial iPSC study. The study described in this paper allowed us

to begin to see differences caused by factors in the specific environments, as well as some similarities that

may be inherent to the parallel programming enterprise. It is still only a beginning toward understanding the

interplay among “natural” I/O programming styles, the influence of file-system constructs in the program-

ming model, and the effect of hardware facilities available. We hope that the CHARISMA project motivates

further attention to I/O-workload characterization as parallel file-system semantics evolve.
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Date # Jobs # files opened read written both none temp MB read MB written
Jun 28 130 186 63 107 16 0 5 6211.05 9971.77
Jun 29 118 194 71 123 0 0 1 1011.04 800.71
Jun 30 111 276 101 154 21 0 13 8234.32 13422.03
Jul 01 41 159 21 135 3 0 8 864.13 925.02
Jul 02 58 62 21 41 0 0 0 500.12 561.00
Jul 03 20 15 12 3 0 0 0 300.69 122.13
Jul 04 46 38 17 17 1 3 0 489.32 924.13
Jul 05 109 163 35 120 8 0 29 4342.25 6211.13
Jul 06 103 192 59 122 11 0 19 344.14 532.14
Jul 07 95 103 43 60 0 0 11 209.13 281.34
Jul 08 44 81 61 19 1 0 0 81.21 100.13
Jul 09 47 57 20 37 0 0 0 135.34 223.13
Jul 10 29 87 31 56 0 0 3 12.13 113.43
Jul 11 88 294 103 168 23 0 10 1095.96 5621.01
Jul 12 122 225 80 114 31 0 0 434.36 829.12
Jul 13 150 274 60 184 30 0 0 812.26 1782.14
Jul 14 95 190 51 137 2 0 3 1342.16 893.24
Jul 15 40 128 29 98 1 0 12 341.21 632.93
Jul 16 25 33 16 17 0 0 0 12.17 83.43
Jul 17 54 128 68 60 0 0 5 239.43 233.21
Jul 18 85 184 65 104 15 0 0 1011.21 1713.23
Jul 19 122 643 213 376 53 1 23 7124.33 11313.93
Jul 20 28 68 31 34 3 0 0 211.31 341.13
Totals 1760 3780 1271 2286 219 4 142 35359.27 57631.46

100% 33.6% 60.5% 5.8% 0.1%

Table 2: A day-by-day summary of the traces collected from CMF jobs.
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Figure 1: Number of nodes used by CMF jobs.
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Date # Jobs # files opened read written both none temp MB read MB written
Jun 23 6 28 8 20 0 0 4 121.24 544.31
Jun 24 11 131 17 106 8 0 13 1672.15 11493.90
Jun 25 15 86 21 62 3 0 2 8943.34 8143.14
Jun 26 13 153 42 102 9 0 12 5341.13 6401.55
Jun 27 18 164 39 114 11 0 1 4100.01 9100.03
Jun 28 9 71 32 35 4 0 0 814.12 1112.41
Jun 29 9 28 11 17 0 0 0 312.41 3142.33
Jun 30 8 34 7 20 5 2 3 112.05 7443.51
Jul 01 6 13 5 8 0 0 0 302.14 344.05
Jul 02 3 18 8 8 2 0 2 139.92 900.02
Jul 03 2 5 3 2 0 0 0 314.41 411.13
Jul 04 7 12 4 7 1 0 0 200.14 135.56
Jul 05 12 98 29 67 2 0 4 5942.34 10078.74
Jul 06 8 63 31 28 4 0 3 1891.11 6443.21
Totals 127 904 257 596 49 2 44 30206.51 65693.89

100% 28.5% 65.9% 5.4% 0.2%

Table 3: A day-by-day summary of the traces collected from CMMD jobs.
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Figure 2: Number of nodes used by CMMD jobs.
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Figure 3: CDF (Cumulative Distribution Function) of duration (in seconds) of CMF jobs.
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Figure 4: CDF of duration (in seconds) of CMMD jobs.
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Number of files opened Number of jobs
0 431
1 813
2 205
3 63
4 31
5 19
6 31
7 16
8 13
9 4
10+ 134

Table 4: Number of files opened per CMF job.

Number of files opened Number of jobs
0 0
1 8
2 6
3 10
4 14
5 11
6 12
7 33
8 13
9 6
10+ 14

Table 5: Number of files opened per CMMD job.
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Figure 5: CDF of file size for files opened by CMF jobs.
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Figure 6: CDF of file size for files opened by CMMD jobs.
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Figure 7: CDF of duration for which CMF jobs kept files open.
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Figure 8: CDF of duration for which CMMD jobs kept files open.
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Figure 9: CDF of the number of writes by request size and amount of data transferred by requests from CMF
jobs.
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Figure 10: CDF of the number of writes by request size and amount of data transferred by requests from
CMMD jobs.
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Figure 11: CDF of the number of reads by request size and amount of data transferred by requests from CMF
jobs.
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Figure 12: CDF of the number of reads by request size and amount of data transferred by requests from
CMMD jobs.
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Figure 13: CDF of sequential access to files from CMF jobs.
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Figure 14: CDF of sequential access to files from CMMD jobs.

23



0 20 40 60 80 100

Percent consecutively accessed

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n 
of

 f
ile

s

read-only files
write-only files
read-write files

Figure 15: CDF of consecutive access to files from CMF jobs.

Number of number of Percent of
different interval sizes files total
0 1243 32.9
1 1501 39.7
2 781 20.7
3 53 1.4
4+ 202 5.3

Table 6: Number of different interval sizes used in each file accessed by CMF jobs.

Number of number of Percent of
different interval sizes files total
0 303 33.5
1 310 34.3
2 143 15.8
3 64 7.1
4+ 84 9.3

Table 7: Number of different interval sizes used in each file accessed by CMMD jobs.
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Figure 16: CDF of consecutive access to files from CMMD jobs.

Different number of Percent of
request sizes files total
0 4 0.1
1 849 22.5
2 1124 29.7
3 1315 34.8
4+ 488 12.9

Table 8: Number of different request sizes used in each file accessed by CMF jobs.

Different number of Percent of
request sizes files total
0 2 0.2
1 343 37.9
2 319 35.4
3 83 9.2
4+ 157 17.3

Table 9: Number of different request sizes used in each file accessed by CMMD jobs.

25



Percent Read Written Both Overall
shared byte block byte block byte block byte block

= 0 29.43 10.78 95.45 88.58 63.01 1.37 71.27 57.28
< 1 31.31 5.27 4.29 5.21 18.26 8.22 14.18 5.40

< 50 12.12 12.43 0.26 4.20 8.22 18.72 4.71 7.80
>= 50 3.38 4.80 0.00 1.09 1.37 12.33 1.22 2.99
> 99 0.00 2.44 0.00 0.92 0.91 0.91 0.05 1.43

= 100 23.76 64.28 0.00 0.00 8.23 58.45 8.47 25.00

Table 10: Byte and block sharing in files accessed by CMF jobs. The numbers in the 8 columns from the
right indicate the percent of files that were x-percent byte or block shared, where x is the value in the leftmost
column of the row corresponding to a particular number.

Percent Read Written Both Overall
shared byte block byte block byte block byte block

= 0 10.51 0.00 93.46 39.77 34.69 0.00 66.48 26.22
< 1 12.45 0.00 3.02 18.96 4.08 2.04 5.75 12.61

< 50 10.12 5.45 1.17 23.32 4.08 6.12 3.87 17.26
>= 50 5.45 2.33 2.35 15.77 36.73 10.20 5.09 11.62
> 99 0.39 1.17 0.00 1.34 0.00 2.04 0.11 1.33

= 100 61.09 91.05 0.00 0.84 20.41 79.59 18.47 30.75

Table 11: Byte and block sharing in files accessed by CMMD jobs. The numbers in the 8 columns from the
right indicate the percent of files that were x-percent byte or block shared, where x is the value in the leftmost
column of the row corresponding to a particular number.
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Figure 17: CDF of elapsed time between re-read and re-write of same blocks from CMF jobs.
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Figure 18: CDF of elapsed time between re-read and re-write of same blocks from CMMD jobs.
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